957 resultados para Harmful algal blooms
Resumo:
Sphaerospermopsis torques-reginae (Komarek) Werner, Laughinghouse IV, Fiore & Sant'Anna comb. nov. was originally described as Anabaena torques-reginae Komarek from planktonic populations of Cuban eutrophic environments, characterized by twisted trichomes with spherical akinetes adjacent to the heterocytes. Recently, using molecular analyses, all planktonic Anabaena Bory ex Bornet & Flahault morphospecies were transferred into the genus Dolichospermum (Ralfs ex Bornet & Flahault) Wacklin el al., including Dolichospermum torques-reginae (Komarek) Wacklin et al. However, by a polyphasic characterization of strains of Anabaena reniformis Lemmermann and Aphanizomenon aphanizomenoides (Forti) Horecka & Komarek (=Anabaena aphanizomenoides Forti), these planktonic species were reclassified into Sphaerospermopsis Zapomelova et al. Our study's main objective was to characterize morphologically and molecularly cyanobacterial populations identified as Dolichospermum torques-reginae, observed in different aquatic ecosystems in South America. The 16S rRNA gene of two Dolichospermum torques-reginae strains (ITEP-024 and ITEP-026) was sequenced and phylogenetically analyzed for the first time. The morphological and phylogenetic analyses demonstrated the affiliation of the studied populations with the genus Sphaerospermopsis and, consequently, were denominated as Sphaerospermopsis torques-reginae. Furthermore, geographic distribution, ecology, and toxicity of the species are discussed. It was observed in different aquatic environments, natural and artificial, tropical and subtropical in Brazil, temperate in Argentina, and tropical in Colombia, suggesting a wide distribution in South America. It normally occurred in dense freshwater blooms, although it was also found in water with low salinity. Sphaerospermopsis torques-reginae toxic blooms have been reported in tropical water bodies in northeastern Brazil.
Resumo:
Recent reports have shown an increase in potentially harmful phytoplankton in Santos bay (Southeastern Brazilian Coast), located in a highly urbanised estuarine complex. Prediction of blooms is, thus, essential but the phytoplankton community structure in very dynamic regions is difficult to determine. In the present work, we discriminate bloom forming microphytoplankton dominance and their relationship to physical and meteorological variables to look for patterns observed in different tides and seasons. Comparing 8 distinct situations, we found five scenarios of dominance that could be related to winds, tides and rainfall: i) Surfers, diatoms occurring during high surf zone energies; ii) Sinkers, represented by larger celled diatoms during spring tide, after periods of high precipitation rates; iii) Opportunistic mixers, composed of chain forming diatoms with small or elongate cells occurring during neap tides; iv) Local mixers, microplanktonic diatoms and dinoflagellates which occurred throughout the 298 sampling stations; and v) Mixotrophic dinoflagellates, after intense estuarine discharges. Results suggest alterations in the temporal patterns for some bloom-forming species, while others appeared in abundances above safe limits for public health. This approach can also illustrate possible impacts of changes in freshwater discharge in highly urbanised estuaries.
Resumo:
[EN]A range of factors may affect the composition and abundance of macroalgae on subtidal rocky reefs. We experimentally determined the interactive effect of the occurrence of the long-spine sea urchin, Diadema antillarum, depth and sedimentation levels on macroalgal assemblage structure on eastern Atlantic rocky reefs. Specifically, we manipulated sea urchin densities (removal of all individuals vs. untouched controls at natural densities) on rocky reefs devoid of erect vegetation, and predicted (1) that removal of sea urchins would differently affect macroalgal assemblage structure between deep (16-18 m) and shallow (8-9 m) reef strata, and that (2) the effect of sea urchin removal on macroalgae would be altered under different scenarios of sedimentation (ambient vs. enhanced). Experimental circular plots (2 m in diameter) were set up at 3 locations at Gran Canaria (Canarian Archipelago), and were maintained and monitored every 4 wk for 1 y. At the end of the experimental period, the structure of the algal assemblages differed between urchin treatments and depth strata, with a larger cover of turf and bushlike algae where urchins were removed and at the shallow reef stratum. More important, differences in algal assemblage structure between urchin treatments were irrespective of sedimentation levels, but shifted from the shallow to the deep stratum. This interactive effect was, in turn, observed for bushlike algae, as a result of a larger magnitude of response (i.e., larger cover) in the shallow stratum relative to the deep stratum, but was not detected for either turf or crustose coralline algae. These results highlight the importance of sorne physical conditions (here, differences in depth) to interact with biotic processes (here, urchin abundance) to create patterns in the organization of subtidal and benthic assemblages
Resumo:
Microalgae are sun - light cell factories that convert carbon dioxide to biofuels, foods, feeds, and other bioproducts. The concept of microalgae cultivation as an integrated system in wastewater treatment has optimized the potential of the microalgae - based biofuel production. These microorganisms contains lipids, polysaccharides, proteins, pigments and other cell compounds, and their biomass can provide different kinds of biofuels such as biodiesel, biomethane and ethanol. The algal biomass application strongly depends on the cell composition and the production of biofuels appears to be economically convenient only in conjunction with wastewater treatment. The aim of this research thesis was to investigate a biological wastewater system on a laboratory scale growing a newly isolated freshwater microalgae, Desmodesmus communis, in effluents generated by a local wastewater reclamation facility in Cesena (Emilia Romagna, Italy) in batch and semi - continuous cultures. This work showed the potential utilization of this microorganism in an algae - based wastewater treatment; Desmodesmus communis had a great capacity to grow in the wastewater, competing with other microorganisms naturally present and adapting to various environmental conditions such as different irradiance levels and nutrient concentrations. The nutrient removal efficiency was characterized at different hydraulic retention times as well as the algal growth rate and biomass composition in terms of proteins, polysaccharides, total lipids and total fatty acids (TFAs) which are considered the substrate for biodiesel production. The biochemical analyses were coupled with the biomass elemental analysis which specified the amount of carbon and nitrogen in the algal biomass. Furthermore photosynthetic investigations were carried out to better correlate the environmental conditions with the physiology responses of the cells and consequently get more information to optimize the growth rate and the increase of TFAs and C/N ratio, cellular compounds and biomass parameter which are fundamental in the biomass energy recovery.
Resumo:
Herbicides are becoming emergent contaminants in Italian surface, coastal and ground waters, due to their intensive use in agriculture. In marine environments herbicides have adverse effects on non-target organisms, as primary producers, resulting in oxygen depletion and decreased primary productivity. Alterations of species composition in algal communities can also occur due to the different sensitivity among the species. In the present thesis the effects of herbicides, widely used in the Northern Adriatic Sea, on different algal species were studied. The main goal of this work was to study the influence of temperature on algal growth in the presence of the triazinic herbicide terbuthylazine (TBA), and the cellular responses adopted to counteract the toxic effects of the pollutant (Chapter 1 and 2). The development of simulation models to be applied in environmental management are needed to organize and track information in a way that would not be possible otherwise and simulate an ecological prospective. The data collected from laboratory experiments were used to simulate algal responses to the TBA exposure at increasing temperature conditions (Chapter 3). Part of the thesis was conducted in foreign countries. The work presented in Chapter 4 was focused on the effect of high light on growth, toxicity and mixotrophy of the ichtyotoxic species Prymnesium parvum. In addition, a mesocosm experiment was conducted in order to study the synergic effect of the pollutant emamectin benzoate with other anthropogenic stressors, such as oil pollution and induced phytoplankton blooms (Chapter 5).
Resumo:
Nowadays microalgae are studied, and a number of species already mass-cultivated, for their application in many fields: food and feed, chemicals, pharmaceutical, phytoremediation and renewable energy. Phytoremediation, in particular, can become a valid integrated process in many algae biomass production systems. This thesis is focused on the physiological and biochemical effects of different environmental factors, mainly macronutrients, lights and temperature on microalgae. Microalgal species have been selected on the basis of their potential in biotechnologies, and nitrogen occurs in all chapters due to its importance in physiological and applicative fields. There are 5 chapters, ready or in preparation to be submitted, with different specific matters: (i) to measure the kinetic parameters and the nutrient removal efficiencies for a selected and local strain of microalgae; (ii) to study the biochemical pathways of the microalga D. communis in presence of nitrate and ammonium; (iii) to improve the growth and the removal efficiency of a specific green microalga in mixotrophic conditions; (iv) to optimize the productivity of some microalgae with low growth-rate conditions through phytohormones and other biostimulants; and (v) to apply the phyto-removal of ammonium in an effluent from anaerobic digestion. From the results it is possible to understand how a physiological point of view is necessary to provide and optimize already existing biotechnologies and applications with microalgae.
Resumo:
Heavy alcohol consumption may accelerate the progression of hepatitis C-related liver disease and/or limit efforts at antiviral treatment in opioid-dependent patients receiving heroin-assisted treatment (HAT). Our study aims to assess alcohol intake among HAT patients by self-reports compared to direct ethanol metabolites.
Resumo:
Isolated GH deficiency type II (IGHD II) is the autosomal dominant form of GHD. In the majority of the cases, this disorder is due to specific GH-1 gene mutations that lead to mRNA missplicing and subsequent loss of exon 3 sequences. When misspliced RNA is translated, it produces a toxic 17.5-kDa GH (Delta3GH) isoform that reduces the accumulation and secretion of wild-type-GH. At present, patients suffering from this type of disease are treated with daily injections of recombinant human GH in order to maintain normal growth. However, this type of replacement therapy does not prevent toxic effects of the Delta3GH mutant on the pituitary gland, which can eventually lead to other hormonal deficiencies. We developed a strategy involving Delta3GH isoform knockdown mediated by expression of a microRNA-30-adapted short hairpin RNA (shRNA) specifically targeting the Delta3GH mRNA of human (shRNAmir-Delta3). Rat pituitary tumor GC cells expressing Delta3GH upon doxycycline induction were transduced with shRNAmir-Delta3 lentiviral vectors, which significantly reduced Delta3GH protein levels and improved human wild-type-GH secretion in comparison with a shRNAmir targeting a scrambled sequence. No toxicity due to shRNAmir expression could be observed in cell proliferation assays. Confocal microscopy strongly suggested that shRNAmir-Delta3 enabled the recovery of GH granule storage and secretory capacity. These viral vectors have shown their ability to stably integrate, express shRNAmir, and rescue IGHD II phenotype in rat pituitary tumor GC cells, a methodology that opens new perspectives for the development of gene therapy to treat IGHD patients.
Resumo:
BACKGROUND: Many users search the Internet for answers to health questions. Complementary and alternative medicine (CAM) is a particularly common search topic. Because many CAM therapies do not require a clinician's prescription, false or misleading CAM information may be more dangerous than information about traditional therapies. Many quality criteria have been suggested to filter out potentially harmful online health information. However, assessing the accuracy of CAM information is uniquely challenging since CAM is generally not supported by conventional literature. OBJECTIVE: The purpose of this study is to determine whether domain-independent technical quality criteria can identify potentially harmful online CAM content. METHODS: We analyzed 150 Web sites retrieved from a search for the three most popular herbs: ginseng, ginkgo and St. John's wort and their purported uses on the ten most commonly used search engines. The presence of technical quality criteria as well as potentially harmful statements (commissions) and vital information that should have been mentioned (omissions) was recorded. RESULTS: Thirty-eight sites (25%) contained statements that could lead to direct physical harm if acted upon. One hundred forty five sites (97%) had omitted information. We found no relationship between technical quality criteria and potentially harmful information. CONCLUSIONS: Current technical quality criteria do not identify potentially harmful CAM information online. Consumers should be warned to use other means of validation or to trust only known sites. Quality criteria that consider the uniqueness of CAM must be developed and validated.
Resumo:
Mortality of corals is increasing due to bleaching, disease and algal overgrowth. In the Caribbean, low rates of coral recruitment contribute to the slow or undetectable rates of recovery in reef ecosystems. Although algae have long been suspected to interfere with coral recruitment, the mechanisms of that interaction remain unclear. We experimentally tested the effects of turf algal abundance on 3 sequential factors important to recruitment of corals: the biophysical delivery of planktonic coral larvae, their propensity to settle, and the availability of microhabitats where they survive. We deployed coral settlement plates inside and outside damselfish Stegastes spp. gardens and cages. Damselfish aggression reduced herbivory from fishes, and cages became fouled with turf algae, both locally increasing algal biomass surrounding the plates. This reduced flushing rates in nursery microhabitats on the plate underside, limiting larvae available for settlement. Coral spat settled preferentially on an early successional crustose coralline alga Titanoderma prototypum but also on or near other coralline algae, biofilms, and calcareous polychaete worm tubes. Post-settlement survival was highest in the fully grazed, lowest algal biomass treatment, and after 27 mo 'spat' densities were 73 % higher in this treatment. The 'gauntlet' refers to the sequence of ecological processes through which corals must survive to recruit. The highest proportion of coral spat successfully running the gauntlet did so under conditions of low algal biomass resulting from increased herbivory. If coral recruitment is heavily controlled at very local scales by this gauntlet, then coral reef managers could improve a reef's recruitment potential by managing for reduced algal biomass.
Resumo:
We have examined the relationship between Fe and blooms of the toxic dinoflagellate Alexandrium tamarense (Balech) (formerly Gonyaulax tamarensis var. excavata (Lebour)) using a chemical method that estimates the biological availability of Fe in seawater. The Fe requirement for optimal growth of A. tamarense in sequential batch culture (ca 3 nM 'available' Fe) was compared with Fe concentrations in waters of the Gulf of Maine, USA. Results indicated that Fe did not limit growth of the organism in nearshore coastal waters or over Georges Bank, but that the organism may have been Fe-limited in Gulf of Maine basin waters. The distribution of A. tamarense in the Gulf of Maine is consistent with these Fe data. Red tide outbreaks in the nearshore environment did not correlate with changes in total Fe or the estimated Fe availability. Although Fe did not appear to trigger outbreaks of A. tamarense in Maine coastal waters, the findings are consistent with suggestions that pulsed inputs of Fe may be important for the development of toxic dinoflagellate blooms in regions (e.g. Florida) where outbreaks are initiated offshore.