963 resultados para HUMAN HELA-CELLS
Resumo:
BACKGROUND: Mast cells activation through FcepsilonRI cross-linking has a pivotal role in the initiation of allergic reactions. The influence of this activation on programmed cell death of human mast cells has not yet been clarified. This study evaluates the influence of IgE-dependent activation alone and in synergy with TRAIL on the expression of molecules involved in the apoptotic signal transduction. METHODS: Human cord blood derived mast cells (CBMC) were cultured with myeloma IgE followed by activation with anti-human IgE. The expression of proteins involved in apoptotic signal transduction was assessed by immunoblot analysis. To test the effect of activation on a pro-apoptotic stimulus, activated, IgE-treated and resting CBMC were incubated with TRAIL, or in a medium with suboptimal concentrations of stem cell factor (SCF). RESULTS: In accordance with a previous study of ours, it was found that IgE-dependent activation increased TRAIL-induced caspase-8 and caspase-3 cleavage. However, it did not have a significant influence on CBMC death induced by SCF withdrawal. IgE-dependent activation increased the expression of FLIP and myeloid cell leukemia 1 (MCL-1) anti-apoptotic molecules as well as the pro-apoptotic one, BIM. In addition, a decrease in BID expression was observed. TRAIL could reverse the increase in FLIP but did not influence the upregulation of MCL-1 and of BIM. CONCLUSIONS: These findings suggest that IgE-dependent activation of human mast cells induces an increase in both pro-survival and pro-apoptotic molecules. We therefore hypothesized that IgE-dependent activation may regulate human mast cell apoptosis by fine-tuning anti-apoptotic and pro-apoptotic factors.
Resumo:
BACKGROUND: Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of glycan-binding inhibitory receptors, and among them, Siglec-8 is selectively expressed on human eosinophils, basophils, and mast cells. On eosinophils, Siglec-8 engagement induces apoptosis, but its function on mast cells is unknown. OBJECTIVE: We sought to study the effect of Siglec-8 engagement on human mast cell survival and mediator release responses. METHODS: Human mast cells were generated from CD34+ precursors. Apoptosis was studied by using flow cytometry. Mast cell mediator release or human lung airway smooth muscle contraction was initiated by FcepsilonRI cross-linking with or without preincubation with Siglec-8 or control antibodies, and release of mediators was analyzed along with Ca++ flux. RBL-2H3 cells transfected with normal and mutated forms of Siglec-8 were used to study how Siglec-8 engagement alters mediator release. RESULTS: Siglec-8 engagement failed to induce human mast cell apoptosis. However, preincubation with Siglec-8 mAbs significantly (P < .05) inhibited FcepsilonRI-dependent histamine and prostaglandin D(2) release, Ca++ flux, and anti-IgE-evoked contractions of human bronchial rings. In contrast, release of IL-8 was not inhibited. Siglec-8 ligation was also shown to inhibit beta-hexosaminidase release and Ca++ flux triggered through FcepsilonRI in RBL-2H3 cells transfected with full-length human Siglec-8 but not in cells transfected with Siglec-8 containing a tyrosine to phenylalanine point mutation in the membrane-proximal immunoreceptor tyrosine-based inhibitory motif domain. CONCLUSION: These data represent the first reported inhibitory effects of Siglec engagement on human mast cells.
Resumo:
Low molecular weight dextran sulfate (DXS) has been reported to inhibit the classical, alternative pathway as well as the mannan-binding lectin pathway of the complement system. Furthermore, it acts as an endothelial cell protectant inhibiting complement-mediated endothelial cell damage. Endothelial cells are covered with a layer of heparan sulfate (HS), which is rapidly released under conditions of inflammation and tissue injury. Soluble HS induces maturation of dendritic cells (DC) via TLR4. In this study, we show the inhibitory effect of DXS on human DC maturation. DXS significantly prevents phenotypic maturation of monocyte-derived DC and peripheral myeloid DC by inhibiting the up-regulation of CD40, CD80, CD83, CD86, ICAM-1, and HLA-DR and down-regulates DC-SIGN in response to HS or exogenous TLR ligands. DXS also inhibits the functional maturation of DC as demonstrated by reduced T cell proliferation, and strongly impairs secretion of the proinflammatory mediators IL-1beta, IL-6, IL-12p70, and TNF-alpha. Exposure to DXS leads to a reduced production of the complement component C1q and a decreased phagocytic activity, whereas C3 secretion is increased. Moreover, DXS was found to inhibit phosphorylation of IkappaB-alpha and activation of NF-kappaB. These findings suggest that DXS prevents TLR-induced maturation of human DC and may therefore be a useful reagent to impede the link between innate and adaptive immunity.
Resumo:
Endothelin-1 (ET-1) is mainly secreted by endothelial cells and acts as a potent vasoconstrictor. In addition ET-1 has also been shown to have pleiotropic effects on a variety of other systems including adaptive immunity. There are two main ET-1 receptors, ET(A) and ET(B), which have different tissue and functional distributions. Dendritic cells (DC) are pivotal antigen-presenting cells linking the innate with the adaptive immune system. DC are sentinels expressing pattern-recognition receptors, e.g. the toll-like receptors (TLR) for detecting danger signals released from pathogens or tissue injury. Here we show for the first time that stimulation of human monocyte-derived DC with exogenous as well as endogenous selective TLR4 and TLR2 agonists induces the production of ET-1 in a dose- and time-dependent manner. 'Alternative' activation of DC in the presence of 1alpha,25-dihydroxyvitamin D(3) results in a marked potentiation of the endothelin response, whereas prostaglandin E(2) or dexamethasone do not increase ET-1 production. Furthermore, chetomin, an inhibitor of the transcription factor hypoxia-inducible factor 1alpha (HIF-1alpha), prevents TLR-mediated secretion of ET-1. Surprisingly, stimulation of human monocytes with LPS does not lead to secretion of detectable amounts of ET-1. These results suggest a role of ET-1 as an important player in human DC biology and innate immunity in general.
Resumo:
The humanized anti-alpha(4) integrin Ab Natalizumab is an effective treatment for relapsing-remitting multiple sclerosis. Natalizumab is thought to exert its therapeutic efficacy by blocking the alpha(4) integrin-mediated binding of circulating immune cells to the blood-brain barrier (BBB). As alpha(4) integrins control other immunological processes, natalizumab may, however, execute its beneficial effects elsewhere. By means of intravital microscopy we demonstrate that natalizumab specifically inhibits the firm adhesion but not the rolling or capture of human T cells on the inflamed BBB in mice with acute experimental autoimmune encephalomyelitis (EAE). The efficiency of natalizumab to block T cell adhesion to the inflamed BBB was found to be more effective in EAE than in acute systemic TNF-alpha-induced inflammation. Our data demonstrate that alpha(4) integrin-mediated adhesion of human T cells to the inflamed BBB during EAE is efficiently blocked by natalizumab and thus provide the first direct in vivo proof of concept of this therapy in multiple sclerosis.
Resumo:
We have shown previously that the raft-associated proteins flotillin-1 and -2 are rapidly recruited to the uropods of chemoattractant-stimulated human neutrophils and T-cells and are involved in cell polarization. Other proteins such as the adhesion receptor PSGL-1, the actin-membrane linker proteins ezrin/radixin/moesin (ERM) and the signaling enzyme phosphatidylinositol-4-phosphate 5-kinase type Iγ90 (PIPKIγ90) also accumulate in the T-cell uropod. Using the in situ proximity ligation assay (PLA) we now have investigated putative close associations of these proteins in human freshly isolated T-cells before and after chemokine addition. The PLA allows in situ subcellular localization of close proximity of endogenous proteins at single-molecule resolution in fixed cells. It allows detection also of weaker and transient complexes that would not be revealed with co-immunoprecipitation approaches. We previously provided evidence for heterodimer formation of tagged flotillin-1 and -2 in T-cells before and after chemokine addition using fluorescence resonance energy transfer (FRET). We now confirm these findings using PLA for the endogenous flotillins in fixed human T-cells. Moreover, in agreement with the literature, our PLA findings confirm a close association of endogenous PSGL-1 and ERM proteins both in resting and chemokine-activated human T-cells. In addition, we provide novel evidence using the PLA for close associations of endogenous activated ERM proteins with PIPKIγ90 and of endogenous flotillins with PSGL-1 in human T-cells, before and after chemokine addition. Our findings suggest that preformed clusters of these proteins coalesce in the uropod upon cell stimulation.
Resumo:
Restoration of the tumor-suppression function by gene transfer of the melanoma differentiation-associated gene 7 (MDA7)/interleukin 24 (IL-24) successfully induces apoptosis in melanoma tumors in vivo. To address the molecular mechanisms involved, we previously revealed that MDA7/IL-24 treatment of melanoma cells down-regulates interferon regulatory factor (IRF)-1 expression and concomitantly up-regulates IRF-2 expression, which competes with the activity of IRF-1 and reverses the induction of IRF-1-regulated inducible nitric oxide synthase (iNOS). Interferons (IFNs) influence melanoma cell survival by modulating apoptosis. A class I IFN (IFN-alpha) has been approved for the treatment of advanced melanoma with some limited success. A class II IFN (IFN-gamma), on the other hand, supports melanoma cell survival, possibly through constitutive activation of iNOS expression. We therefore conducted this study to explore the molecular pathways of MDA7/IL-24 regulation of apoptosis via the intracellular induction of IFNs in melanoma. We hypothesized that the restoration of the MDA7/IL-24 axis leads to upregulation of class I IFNs and induction of the apoptotic cascade. We found that MDA7/IL-24 induces the secretion of endogenous IFN-beta, another class I IFN, leading to the arrest of melanoma cell growth and apoptosis. We also identified a series of apoptotic markers that play a role in this pathway, including the regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas-FasL. In summary, we described a novel pathway of MDA7/IL-24 regulation of apoptosis in melanoma tumors via endogenous IFN-beta induction followed by IRF regulation and TRAIL/FasL system activation.
Resumo:
Alternative fuels are increasingly combusted in diesel- and gasoline engines and the contribution of such exhausts to the overall air pollution is on the rise. Recent findings on the possible adverse effects of biodiesel exhaust are contradictive, at least partly resulting from the various fuel qualities, engine types and different operation conditions that were tested. However, most of the studies are biased by undesired interactions between the exhaust samples and biological culture media. We here report how complete, freshly produced exhausts from fossil diesel (B0), from a blend of 20% rapeseed-methyl ester (RME) and 80% fossil diesel (B20) and from pure rapeseed methyl ester (B100) affect a complex 3D cellular model of the human airway epithelium in vitro by exposing the cells at the air–liquid interface. The induction of pro-apoptotic and necrotic cell death, cellular morphology, oxidative stress, and pro-inflammatory responses were assessed. Compared to B0 exhaust, B20 exhaust decreased oxidative stress and pro-inflammatory responses, whereas B100 exhaust, depending on exposure duration, decreased oxidative stress but increased pro-inflammatory responses. The effects are only very weak and given the compared to fossil diesel higher ecological sustainability of biodiesel, it appears that – at least RME – can be considered a valuable alternative to pure fossil diesel.
Resumo:
Matrix metalloproteinase-9 (MMP-9) cleaves collagen, allowing leukocytes to traffic toward the vasculature and the lymphatics. When MMP-9 is unregulated by tissue inhibitor of metalloproteinase-1 (TIMP-1), this can lead to tissue destruction. Dendritic cells (DCs) infiltrate the oral mucosa increasingly in chronic periodontitis, characterized by infection with several pathogens including Porphyromonas gingivalis. In this study, human monocyte-derived DCs were pulsed with different doses of lipopolysaccharide of P. gingivalis 381 and of Escherichia coli type strain 25922, as well as whole live isogenic fimbriae-deficient mutant strains of P. gingivalis 381. Levels of induction of MMP-9 and TIMP-1, as well as interleukin-10 (IL-10), which reportedly inhibits MMP-9 induction, were measured by several approaches. Our results reveal that lipopolysaccharide of P. gingivalis, compared with lipopolysaccharide from E. coli type strain 25922, is a relatively potent inducer of MMP-9, but a weak inducer of TIMP-1, contributing to a high MMP-9/TIMP-1 ratio.Whole live P. gingivalis strain 381, major fimbriae mutant DPG-3 and double mutant MFB were potent inducers of MMP-9, but minor fimbriae mutant MFI was not. MMP-9 induction was inversely proportional to IL-10 induction. These results suggest that lipopolysaccharide and the minor and the major fimbriae of P. gingivalis may play distinct roles in induction by DCs of MMP-9, a potent mediator of local tissue destruction and leukocyte trafficking.
Resumo:
The interaction of hematopoietic precursor cell with bone marrow stromal cells is assumed to be important to the survival of hematopoietic precursor cells during hematopoietic cell long-term culture. Early hematopoietic stem cells are preferentially found within the stromal adherent cell fraction in primary long-term bone marrow cultures. The purpose of this dissertation was to understand the molecular mechanisms that govern these interactions for the regulation of survival and proliferation of early versus late hematopoietic cells.^ Monoclonal antibodies to the VLA-4 recognize the alpha4 beta1 integrin receptor on human hematopoietic cells. This monoclonal antibody blocks the adhesion between early hematopoietic progenitor cells (CD34 selected cells) and stromal cells when added to cultures of these cells. Addition of the VLA-4 monoclonal antibody to cultures of stromal cells and CD34 selected cells was shown to induce apoptosis of CD34 selected cells in these CD34 selected cell/stromal cell cocultures, as measured by the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end-labeling method. In contrast to these experiments with early hematopoietic progenitor cells (CD34+), the level of adhesion between more differentiated cells (unfractionated hematopoietic cells) and stromal cells was not significantly altered by addition of the anti-VLA-4 monoclonal antibody. Similarly, the level of apoptosis of unfractionated hematopoietic cells was not significantly increased by the addition of anti-VLA-4 monoclonal antibody to cultures of the latter cells with stromal cells. The binding of the unfractionated cells is less than that of the CD34 selected. Since there is no difference between the alpha4 beta1 integrin expression level of the early and late myeloid cells, there may be a difference in the functional state of the integrin between the early and late myeloid cells. We also show that CD34+ selected precursor cells proliferate at a higher rate when these cells are plated on recombinant VCAM-1 molecules. These data indicate that the alpha4beta1 integrin receptor (VLA-4) plays a central role in the apoptosis rescue function which results from the anchorage-dependent growth of the CD34 selected early hematopoietic cells on stromal cells. The data suggest that these apoptosis rescue pathways have less significance as the cells mature and become anchorage-independent in their growth. These data should assist in the design of systems for the ex vivo proliferation and transduction of early hematopoietic cells for genetic therapy. ^
Resumo:
The feasibility of establishment of continuously proliferating growth factor-dependent human B lymphocytes was investigated. Normal B lymphocytes prepared from peripheral venous blood were stimulated with a variety of known polyclonal B cell activators, in the continuous presence of various cytokine preparations. Continuously proliferating growth factor-dependent B cell populations were obtained from cultures activated with either insoluble anti-IgM ((mu)-chain specific), soluble anti-IgM, heat-killed Staphylococcus aureus Cowen I (SAC), or dextran sulphate (DxS), in the continuous presence of exogenously added growth factor preparations containing either IL-1, IL-2 and BCGF, or BCGF alone. Although growth factor-dependent B cell lines were obtained via all three methods of activation, the correlation of mode of activation and growth factor preparation proved to be critical. B cell lines could not be established with anti-(mu) activation in the presence of only BCGF; however, B cell lines were successfully obtained with SAC or DxS activation from those cultures continuously replenished with only BCGF. These cultured B lymphocyte populations were routinely maintained in logarithmic-phase growth in the presence of exogenously added growth factor, and exhibited a population doubling time of approximately 36 hours. They were shown to specifically absorb BCGF, suggesting the presence of membrane receptors for it. Also, these cultured B cells have been utilized for the development of a microassay for the assessment of a M(,r) 12,000-14,000 B cell growth factor activity that is accurate, sensitive, and precise. The pronounced sensitivity of this bioassay beyond that of the conventional peripheral blood B cell assay has aided in the purification to homogeneity of natural product extracellular BCGF (EC-BCGF), and in the determination of the nucleotide sequence for a gene coding for a protein exhibiting BCGF activity. Additionally, these B cell lines specifically absorb, and proliferate in the presence of, an affinity-purified M(,r) 60,000 trypsin-sensitive intracellular protein derived from freshly isolated human T lymphocytes, providing evidence for a putative intracellular precursor of EC-BCGF, or a novel high molecular weight BCGF species. ^
Resumo:
T helper type 9 (TH9) cells can mediate tumor immunity and participate in autoimmune and allergic inflammation in mice, but little is known about the TH9 cells that develop in vivo in humans. We isolated T cells from human blood and tissues and found that most memory TH9 cells were skin-tropic or skin-resident. Human TH9 cells coexpressed tumor necrosis factor-α and granzyme B and lacked coproduction of TH1/TH2/TH17 cytokines, and many were specific for Candida albicans. Interleukin-9 (IL-9) production was transient and preceded the up-regulation of other inflammatory cytokines. Blocking studies demonstrated that IL-9 was required for maximal production of interferon-γ, IL-9, IL-13, and IL-17 by skin-tropic T cells. IL-9-producing T cells were increased in the skin lesions of psoriasis, suggesting that these cells may contribute to human inflammatory skin disease. Our results indicate that human TH9 cells are a discrete T cell subset, many are tropic for the skin, and although they may function normally to protect against extracellular pathogens, aberrant activation of these cells may contribute to inflammatory diseases of the skin.
Resumo:
Obesity is increasing throughout the globe and characterized by excess adipose tissue, which represents a complex endocrine organ. Adipose tissue secrets bioactive molecules called adipokines, which act at endocrine, paracrine, and autocrine levels. Obesity has recently been shown to be associated with periodontitis, a disease characterized by the irreversible destruction of the tooth-supporting tissues, that is, periodontium, and also with compromised periodontal healing. Although the underlying mechanisms for these associations are not clear yet, increased levels of proinflammatory adipokines, such as leptin, as found in obese individuals, might be a critical pathomechanistic link. The objective of this study was to examine the impact of leptin on the regenerative capacity of human periodontal ligament (PDL) cells and also to study the local leptin production by these cells. Leptin caused a significant downregulation of growth (TGFβ1, and VEGFA) and transcription (RUNX2) factors as well as matrix molecules (collagen, and periostin) and inhibited SMAD signaling under regenerative conditions. Moreover, the local expression of leptin and its full-length receptor was significantly downregulated by inflammatory, microbial, and biomechanical signals. This study demonstrates that the hormone leptin negatively interferes with the regenerative capacity of PDL cells, suggesting leptin as a pathomechanistic link between obesity and compromised periodontal healing.