215 resultados para HSAC ONC
Resumo:
Translationally controlled tumour protein (TCTP) is a highly conserved protein present in all eukaryotic organisms. Various cellular functions and molecular interactions have been ascribed to this protein, many related to its growth-promoting and antiapoptotic properties. TCTP levels are highly regulated in response to various cellular stimuli and stresses. We have shown recently that the double-stranded RNA-dependent protein kinase, PKR, is involved in translational regulation of TCTP. Here we extend these studies by demonstrating that TCTP is downregulated in response to various proapoptotic treatments, in particular agents that induce Ca++ stress, in a PKR-dependent manner. This regulation requires phosphorylation of protein synthesis factor eIF2α. Since TCTP has been characterized as an antiapoptotic and Ca++-binding protein, we asked whether it is involved in protecting cells from Ca++-stress-induced apoptosis. Overexpression of TCTP partially protects cells against thapsigargin-induced apoptosis, as measured using caspase-3 activation assays, a nuclear fragmentation assay, using fluorescence-activated cell sorting analysis, and time-lapse video microscopy. TCTP also protects cells against the proapoptotic effects of tunicamycin and etoposide, but not against those of arsenite. Our results imply that cellular TCTP levels influence sensitivity to apoptosis and that PKR may exert its proapoptotic effects at least in part through downregulation of TCTP via eIF2α phosphorylation.
Resumo:
Tumor necrosis factor-related apoptosis-inducing ligand-TNFSF10 (TRAIL), a member of the TNF-alpha family and a death receptor ligand, was shown to selectively kill tumor cells. Not surprisingly, TRAIL is downregulated in a variety of tumor cells, including BCR-ABL-positive leukemia. Although we know much about the molecular basis of TRAIL-mediated cell killing, the mechanism responsible for TRAIL inhibition in tumors remains elusive because (a) TRAIL can be regulated by retinoic acid (RA); (b) the tumor antigen preferentially expressed antigen of melanoma (PRAME) was shown to inhibit transcription of RA receptor target genes through the polycomb protein, enhancer of zeste homolog 2 (EZH2); and (c) we have found that TRAIL is inversely correlated with BCR-ABL in chronic myeloid leukemia (CML) patients. Thus, we decided to investigate the association of PRAME, EZH2 and TRAIL in BCR-ABL-positive leukemia. Here, we demonstrate that PRAME, but not EZH2, is upregulated in BCR-ABL cells and is associated with the progression of disease in CML patients. There is a positive correlation between PRAME and BCR-ABL and an inverse correlation between PRAME and TRAIL in these patients. Importantly, knocking down PRAME or EZH2 by RNA interference in a BCR-ABL-positive cell line restores TRAIL expression. Moreover, there is an enrichment of EZH2 binding on the promoter region of TRAIL in a CML cell line. This binding is lost after PRAME knockdown. Finally, knocking down PRAME or EZH2, and consequently induction of TRAIL expression, enhances Imatinib sensibility. Taken together, our data reveal a novel regulatory mechanism responsible for lowering TRAIL expression and provide the basis of alternative targets for combined therapeutic strategies for CML. Oncogene (2011) 30, 223-233; doi:10.1038/onc.2010.409; published online 13 September 2010
Resumo:
Head and neck cancer remains a morbid and often fatal disease and at the present time few effective molecular markers have been identified. The purpose of the present work was to identify new molecular markers for head and neck squamous cell carcinoma (HNSCC). We applied methylation-sensitive arbitrarily primed PCR (MS/APPCR) to isolate sequences differentially methylated in HNSCC. The most frequently hypermethylated fragment we found maps close to a cytosine guanine dinucleotide (CpG) island on chromosome 9q33.2, and hypermethylation of this CpG island was associated with transcriptional silencing of an alternative transcript of the LHX6 gene. Using combined bisulfite restriction analysis (COBRA), hypermethylation of this fragment was detected in 13 of 14 (92.8%) HNSCC cell lines studied and 21 of 32 (65.6%) primary tumors, whereas little or no methylation was seen in 10 normal oral mucosa samples. We extended this investigation to other cancer cell lines and methylation was found in those derived from colon, breast, leukemia and lung, and methylation was also found in 12/14 primary colon tumors. These findings suggest that differentially methylated (DIME)-6 hypermethylation is a good cancer marker in HNSCC as well as in other kinds of neoplasias and confirm the importance of searching for markers of epigenetic dysregulation in cancer.
Resumo:
Quantitative real time PCR was performed on genomic DNA from 40 primary oral carcinomas and the normal adjacent tissues. The target genes ECGFB, DIA1, BIK, and PDGFB and the microsatellite markers D22S274 and D22S277, mapped on 22q13, were selected according to our previous loss of heterozygosity findings in head and neck tumors. Quantitative PCR relies on the comparison of the amount of product generated from a target gene and that generated from a disomic reference gene (GAPDH-housekeeping gene). Reactions have been performed with normal control in triplicates, using the 7700 Sequence Detection System (PE Applied Biosystems). Losses in the sequences D22S274 (22q13.31) and in the DIA1 (22q13.2-13.31) gene were detected in 10 out of 40 cases (25%) each. Statistically significant correlations were observed for patients with relative copy number loss of the marker D22S274 and stages T3-T4 of disease (P=0.025), family history of cancer (P = 0.001), and death (P = 0.021). Relative copy number loss involving the DIA1 gene was correlated to family history of cancer (P<0.001), death (P=0.002), and consumption of alcohol (P=0.026). Log-rank test revealed a significant decrease in survival (P=0.0018) for patients with DIA1 gene loss. Relative copy number losses detected in these sequences may be related to disease progression and a worse prognosis in patients with oral cancer.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
MicroRNA miR-146b-5p regulates signal transduction of TGF-beta by repressing SMAD4 in thyroid cancer
Resumo:
MicroRNAs (miRNA) are small non-coding RNAs involved in post-transcriptional gene regulation that have crucial roles in several types of tumors, including papillary thyroid carcinoma (PTC). miR-146b-5p is overexpressed in PTCs and is regarded as a relevant diagnostic marker for this type of cancer. A computational search revealed that miR-146b-5p putatively binds to the 3' untranslated region (UTR) of SMAD4, an important member of the transforming growth factor beta (TGF-beta) signaling pathway. The TGF-beta pathway is a negative regulator of thyroid follicular cell growth, and the mechanism by which thyroid cancer cells evade its inhibitory signal remains unclear. We questioned whether the modulation of the TGF-beta pathway by miR-146b-5p can contribute to thyroid tumorigenesis. Luciferase reporter assay confirmed the direct binding of miR-146b-5p on the SMAD4 3'UTR. Specific inhibition of miR-146b-5p with a locked nucleic acid-modified anti-miR-146b oligonucleotide significantly increased SMAD4 levels in the human papillary carcinoma cell lines, TPC-1 and BCPAP. Moreover, suppression of miR-146b-5p increased the cellular response to the TGF-beta anti-proliferative signal, significantly decreasing the proliferation rate. The overexpression of miR-146b-5p in normal rat follicular PCCL3 cells decreased SMAD4 levels and disrupted TGF-beta signal transduction. MiR-146b-5p overexpression in PCCL3 cells also significantly increased cell proliferation in the absence of thyroid-stimulating hormone and conferred resistance to TGF-beta-mediated cell-cycle arrest. Additionally, the activation of thyroid most common oncogenes RET/PTC3 and BRAF in PCCL3 cells upregulated miR-146b-5p expression. Our results confirm the oncogenic role of miR-146b-5p in thyroid follicular cells and contribute to knowledge regarding the modulation of TGF-beta signal transduction by miRNAs in PTCs. Oncogene (2012) 31, 1910-1922; doi:10.1038/onc.2011.381; published online 29 August 2011
Resumo:
Chk1 both arrests replication forks and enhances repair of DNA damage by phosphorylating downstream effectors. Although there has been a concerted effort to identify effectors of Chk1 activity, underlying mechanisms of effector action are still being identified. Metnase (also called SETMAR) is a SET and transposase domain protein that promotes both DNA double-strand break (DSB) repair and restart of stalled replication forks. In this study, we show that Metnase is phosphorylated only on Ser495 (S495) in vivo in response to DNA damage by ionizing radiation. Chk1 is the major mediator of this phosphorylation event. We had previously shown that wild-type (wt) Metnase associates with chromatin near DSBs and methylates histone H3 Lys36. Here we show that a Ser495Ala (S495A) Metnase mutant, which is not phosphorylated by Chk1, is defective in DSB-induced chromatin association. The S495A mutant also fails to enhance repair of an induced DSB when compared with wt Metnase. Interestingly, the S495A mutant demonstrated increased restart of stalled replication forks compared with wt Metnase. Thus, phosphorylation of Metnase S495 differentiates between these two functions, enhancing DSB repair and repressing replication fork restart. In summary, these data lend insight into the mechanism by which Chk1 enhances repair of DNA damage while at the same time repressing stalled replication fork restart. Oncogene (2012) 31, 4245-4254; doi:10.1038/onc.2011.586; published online 9 January 2012
Resumo:
The majority of patients with acute myeloid leukemia (AML) still die of their disease, and novel therapeutic concepts are needed. Timely expression of the hematopoietic master regulator PU.1 is crucial for normal development of myeloid and lymphoid cells. Targeted disruption of an upstream regulatory element (URE) located several kb upstream in the PU.1 promoter decreases PU.1 expression thereby inducing AML in mice. In addition, suppression of PU.1 has been observed in specific subtypes of human AML. Here, we identified nuclear factor-kappaB (NF-kappaB) to activate PU.1 expression through a novel site within the URE. We found sequence variations of this particular NF-kappaB site in 4 of 120 AML patients. These variant NF-kappaB sequences failed to mediate activation of PU.1. Moreover, the synergistic activation of PU.1 together with CEBPB through these variant sequences was also lost. Finally, AML patients with such variant sequences had suppressed PU.1 mRNA expression. This study suggests that changes of a single base pair in a distal element critically affect the regulation of the tumor suppressor gene PU.1 thereby contributing to the development of AML.
Resumo:
Glucocorticoids (GC) have important anti-inflammatory and pro-apoptotic activities. Initially thought to be exclusively produced by the adrenal glands, there is now increasing evidence for extra-adrenal sources of GCs. We have previously shown that the intestinal epithelium produces immunoregulatory GCs and that intestinal steroidogenesis is regulated by the nuclear receptor liver receptor homolog-1 (LRH-1). As LRH-1 has been implicated in the development of colon cancer, we here investigated whether LRH-1 regulates GC synthesis in colorectal tumors and whether tumor-produced GCs suppress T-cell activation. Colorectal cancer cell lines and primary tumors were found to express steroidogenic enzymes and regulatory factors required for the de novo synthesis of cortisol. Both cell lines and primary tumors constitutively produced readily detectable levels of cortisol, as measured by radioimmunoassay, thin-layer chromatography and bioassay. Whereas overexpression of LRH-1 significantly increased the expression of steroidogenic enzymes and the synthesis of cortisol, downregulation or inhibition of LRH-1 effectively suppressed these processes, indicating an important role of LRH-1 in colorectal tumor GC synthesis. An immunoregulatory role of tumor-derived GCs could be further confirmed by demonstrating a suppression of T-cell activation. This study describes for the first time cortisol synthesis in a non-endocrine tumor in humans, and suggests that the synthesis of bioactive GCs in colon cancer cells may account as a novel mechanism of tumor immune escape.
Resumo:
Glutathione-S-transferase of the Pi class (GSTP1) is frequently overexpressed in a variety of solid tumors and has been identified as a potential therapeutic target for cancer therapy. GSTP1 is a phase II detoxification enzyme and conjugates the tripeptide glutathione to endogenous metabolites and xenobiotics, thereby limiting the efficacy of antitumor chemotherapeutic treatments. In addition, GSTP1 regulates cellular stress responses and apoptosis by sequestering and inactivating c-Jun N-terminal kinase (JNK). Thiazolides are a novel class of antibiotics for the treatment of intestinal pathogens with no apparent side effects on the host cells and tissue. Here we show that thiazolides induce a GSTP1-dependent and glutathione-enhanced cell death in colorectal tumor cell lines. Downregulation of GSTP1 reduced the apoptotic activity of thiazolides, whereas overexpression enhanced it. Thiazolide treatment caused strong Jun kinase activation and Jun kinase-dependent apoptosis. As a critical downstream target of Jun kinase we identified the pro-apoptotic Bcl-2 homolog Bim. Thiazolides induced Bim expression and activation in a JNK-dependent manner. Downregulation of Bim in turn significantly blocked thiazolide-induced apoptosis. Whereas low concentrations of thiazolides failed to induce apoptosis directly, they potently sensitized colon cancer cells to TNF-related apoptosis-inducing ligand- and chemotherapeutic drug-induced cell death. Although GSTP1 overexpression generally limits chemotherapy and thus antitumor treatment, our study identifies GSTP1 as Achilles' heel and thiazolides as novel interesting apoptosis sensitizer for the treatment of colorectal tumors.
Resumo:
The c-Src kinase regulates cancer cell invasion through inhibitor of DNA binding/differentiation 1 (ID1). Src and ID1 are frequently overexpressed in human lung adenocarcinoma. The current study aimed at identifying microRNAs (miRNAs) involved in the Src-ID1 signaling in lung cancer. Incubation of lung cancer cells with the Src inhibitor saracatinib led to the upregulation of several miRNAs including miR-29b, which was the most highly upregulated miRNA with predicted binding to the ID1 3'-untranslated region (UTR). Luciferase reporter assays confirmed direct binding of miR-29b to the ID1 3'-UTR. Expression of miR-29b suppressed ID1 levels and significantly reduced migration and invasion. Expression of antisense-miR-29b (anti-miR-29b), on the other hand, enhanced ID1 mRNA and protein levels, and significantly increased lung cancer cell migration and invasion, a hallmark of the Src-ID1 pathway. The ectopic expression of ID1 in miR-29b-overexpressing cells was able to rescue the migratory potential of these cells. Both, anti-miR-29b and ID1 overexpression diminished the effects of the Src inhibitors saracatinib and dasatinib on migration and invasion. Saracatinib and dasatinib decreased c-Myc transcriptional repression on miR-29b and led to increased ID1 protein levels, whereas forced expression of c-Myc repressed miR-29b and induced ID1. In agreement, we showed direct recruitment of c-Myc to the miR-29b promoter. miR-29b was significantly downregulated in primary lung adenocarcinoma samples compared with matched alveolar lung tissue, and miR-29b expression was a significant prognostic factor for patient outcome. These results suggest that miR-29b is involved in the Src-ID1 signaling pathway, is dysregulated in lung adenocarcinoma and is a potential predictive marker for Src kinase inhibitors.
Bone morphogenetic protein-7 is a MYC target with prosurvival functions in childhood medulloblastoma
Resumo:
Medulloblastoma (MB) is the most common malignant brain tumor in children. It is known that overexpression and/or amplification of the MYC oncogene is associated with poor clinical outcome, but the molecular mechanisms and the MYC downstream effectors in MB remain still elusive. Besides contributing to elucidate how progression of MB takes place, most importantly, the identification of novel MYC-target genes will suggest novel candidates for targeted therapy in MB. A group of 209 MYC-responsive genes was obtained from a complementary DNA microarray analysis of a MB-derived cell line, following MYC overexpression and silencing. Among the MYC-responsive genes, we identified the members of the bone morphogenetic protein (BMP) signaling pathway, which have a crucial role during the development of the cerebellum. In particular, the gene BMP7 was identified as a direct target of MYC. A positive correlation between MYC and BMP7 expression was documented by analyzing two distinct sets of primary MB samples. Functional studies in vitro using a small-molecule inhibitor of the BMP/SMAD signaling pathway reproduced the effect of the small interfering RNA-mediated silencing of BMP7. Both approaches led to a block of proliferation in a panel of MB cells and to inhibition of SMAD phosphorylation. Altogether, our findings indicate that high MYC levels drive BMP7 overexpression, promoting cell survival in MB cells. This observation suggests the potential relevance of targeting the BMP/SMAD pathway as a novel therapeutic approach for the treatment of childhood MB.
Resumo:
Chemotherapeutic drug resistance is one of the major causes for treatment failure in high-risk neuroblastoma (NB), the most common extra cranial solid tumor in children. Poor prognosis is typically associated with MYCN amplification. Here, we utilized a loss-of-function kinome-wide RNA interference screen to identify genes that cause cisplatin sensitization. We identified fibroblast growth factor receptor 2 (FGFR2) as an important determinant of cisplatin resistance. Pharmacological inhibition of FGFR2 confirmed the importance of this kinase in NB chemoresistance. Silencing of FGFR2 sensitized NB cells to cisplatin-induced apoptosis, which was regulated by the downregulation of the anti-apoptotic proteins BCL2 and BCLX(L). Mechanistically, FGFR2 was shown to activate protein kinase C-δ to induce BCL2 expression. FGFR2, as well as the ligand fibroblast growth factor-2, were consistently expressed in primary NB and NB cell lines, indicating the presence of an autocrine loop. Expression analysis revealed that FGFR2 correlates with MYCN amplification and with advanced stage disease, demonstrating the clinical relevance of FGFR2 in NB. These findings suggest a novel role for FGFR2 in chemoresistance and provide a rational to combine pharmacological inhibitors against FGFR2 with chemotherapeutic agents for the treatment of NB.Oncogene advance online publication, 1 October 2012; doi:10.1038/onc.2012.416.