999 resultados para HMW-GS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work deals with the development of a prototype of a helicopter quadrotor for monitoring applications in oil facilities. Anomaly detection problems can be resolved through monitoringmissions performed by a suitably instrumented quadrotor, i.e. infrared thermosensors should be embedded. The proposed monitoring system aims to reduce accidents as well as to make possible the use of non-destructive techniques for detection and location of leaks caused by corrosion. To this end, the implementation of a prototype, its stabilization and a navigation strategy have been proposed. The control strategy is based on dividing the problem into two control hierarchical levels: the lower level stabilizes the angles and the altitude of the vehicle at the desired values, while the higher one provide appropriate references signals to the lower level in order the quadrotor performs the desired movements. The navigation strategy for helicopter quadrotor is made using information provided by a acquisition image system (monocular camera) embedded onto the helicopter. Considering that the low-level control has been solved, the proposed vision-based navigation technique treats the problem as high level control strategies, such as, relative position control, trajectory generation and trajectory tracking. For the position control we use a control technique for visual servoing based on image features. The trajectory generation is done in a offline step, which is a visual trajectory composed of a sequence of images. For the trajectory tracking problem is proposed a control strategy by continuous servovision, thus enabling a navigation strategy without metric maps. Simulation and experimental results are presented to validate the proposal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research is to discuss about the need for implementation of new alternatives for the implementation on the metrological control: on the findings of initial and subsequent measurements, the control procedures of measurement uncertainty applied in assessing the loss or remains found in handling operations of bulk liquids, when used turbine meters used in measuring the tax on the business of Petrobras, due to the current environment of legal metrology and scientific, both domestic and international. We aim, with these alternatives: standardizing the minimization of random and systematic errors, the estimate of the remaining errors, as well as the management control of metrological calibration procedures, control of measurement uncertainty, and contribute to the change in the form of performance of legal metrology and scientific disseminating new information to change management of metrological control, objectively focused on aspects of supervision in implementing these activities in the control of the uncertainties of measurement used in our processes in the fiscal measurement system Petrobras. Results are presented, information and comments on the influence of measurement uncertainty in the current results of the fiscal and transfer of custody. This will emphasize the need, among other things, improvement and expansion of metrological control monitored by setting a better meet demand, calibration equipment and measuring instruments for Petrobras. Finally, we intend to establish the need for improving the method of evaluation of the data meter applied to the current management control of measurement uncertainty by proposing a methodology for addressing the problem, as well as highlighting the expected results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, where the market competition requires products with better quality and a constant search for cost savings and a better use of raw materials, the research for more efficient control strategies becomes vital. In Natural Gas Processin Units (NGPUs), as in the most chemical processes, the quality control is accomplished through their products composition. However, the chemical composition analysis has a long measurement time, even when performed by instruments such as gas chromatographs. This fact hinders the development of control strategies to provide a better process yield. The natural gas processing is one of the most important activities in the petroleum industry. The main economic product of a NGPU is the liquefied petroleum gas (LPG). The LPG is ideally composed by propane and butane, however, in practice, its composition has some contaminants, such as ethane and pentane. In this work is proposed an inferential system using neural networks to estimate the ethane and pentane mole fractions in LPG and the propane mole fraction in residual gas. The goal is to provide the values of these estimated variables in every minute using a single multilayer neural network, making it possibly to apply inferential control techniques in order to monitor the LPG quality and to reduce the propane loss in the process. To develop this work a NGPU was simulated in HYSYS R software, composed by two distillation collumns: deethanizer and debutanizer. The inference is performed through the process variables of the PID controllers present in the instrumentation of these columns. To reduce the complexity of the inferential neural network is used the statistical technique of principal component analysis to decrease the number of network inputs, thus forming a hybrid inferential system. It is also proposed in this work a simple strategy to correct the inferential system in real-time, based on measurements of the chromatographs which may exist in process under study

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The continuous gas lift method is the main artificial lifting method used in the oil industry for submarine wells, due to its robustness and the large range of flow rate that the well might operate. Nowadays, there is a huge amount of wells producing under this mechanism. This method of elevation has a slow dynamics due to the transients and a correlation between the injected gas rate and the of produced oil rate. Electronics controllers have been used to adjust many parameters of the oil wells and also to improve the efficiency of the gas lift injection system. This paper presents a intelligent control system applied to continuous gas injection in wells, based in production s rules, that has the target of keeping the wells producing during the maximum period of time, in its best operational condition, and doing automatically all necessary adjustments when occurs some disturbance in the system. The author also describes the application of the intelligent control system as a tool to control the flow pressure in the botton of the well (Pwf). In this case, the control system actuates in the surface control valve

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The investigation of viability to use containers for Natural Gas Vehicle (NGV) storage, with different geometries of commercial standards, come from necessity to join the ambient, financial and technological benefits offered by the gas combustion, to the convenience of not modify the original proposal of the automobile. The use of these current cylindrical models for storage in the converted vehicles is justified by the excellent behavior that this geometry presents about the imposed tensions for the high pressure that the related reservoirs are submitted. However, recent research directed toward application of adsorbent materials in the natural gas reservoirs had proven a substantial redusction of pressure and, consequently, a relief of the tensions in the reservoirs. However, this study considers alternative geometries for NGV reservoirs, searching the minimization of dimensions and weight, remaining capacity to resist the tensions imposed by the new pressure situation. The proposed reservoirs parameters are calculated through a mathematical study of the internal pressure according to Brazilian standards (NBR) for pressure vessels. Finally simulations of the new geometries behavior are carried through using a commercially avaible Finite Element Method (FEM) software package ALGOR® to verify of the reservoirs efficincy under the gas pressure load

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The State of Rio Grande do Norte, Brazil, possess major deposits of feldspar, clay, kaolin and talc, all raw materials used in the production of porcelainized stoneware tiles. Conversely, state industries manufacture only low added value red ceramics. Porcelainized stoneware tiles is one of the noblest ceramics, depicting low water absorption (typically below of 0,5%), in addition to excellent staining resistance and mechanical strength. The present work aims at investigating the potential of local raw materials for the production of porcelainized stoneware tiles. To that end, these materials were characterized by X-ray fluorescence, X-ray diffraction, particle size analysis, thermal gravimetric analysis and thermal differential analysis. Admixtures containing different compositions were prepared and fired at three temperatures, 1150, 1200 and 1250°C for 30 min. After firing, tests samples were characterized by water absorption tests, linear retraction, dilatometric analysis, apparent porosity, apparent specific mass, flexural strength, and microstructural analysis by XRD and SEM. The results revealed that ceramics with porcelainized stoneware tiles characteristics could be produced from raw materials originated in the State of Rio Grande do Norte

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiphase flows in ducts can adopt several morphologies depending on the mass fluxes and the fluids properties. Annular flow is one of the most frequently encountered flow patterns in industrial applications. For gas liquid systems, it consists of a liquid film flowing adjacent to the wall and a gas core flowing in the center of the duct. This work presents a numerical study of this flow pattern in gas liquid systems in vertical ducts. For this, a solution algorithm was developed and implemented in FORTRAN 90 to numerically solve the governing transport equations. The mass and momentum conservation equations are solved simultaneously from the wall to the center of the duct, using the Finite Volumes Technique. Momentum conservation in the gas liquid interface is enforced using an equivalent effective viscosity, which also allows for the solution of both velocity fields in a single system of equations. In this way, the velocity distributions across the gas core and the liquid film are obtained iteratively, together with the global pressure gradient and the liquid film thickness. Convergence criteria are based upon satisfaction of mass balance within the liquid film and the gas core. For system closure, two different approaches are presented for the calculation of the radial turbulent viscosity distribution within the liquid film and the gas core. The first one combines a k- Ɛ one-equation model and a low Reynolds k-Ɛ model. The second one uses a low Reynolds k- Ɛ model to compute the eddy viscosity profile from the center of the duct right to the wall. Appropriate interfacial values for k e Ɛ are proposed, based on concepts and ideas previously used, with success, in stratified gas liquid flow. The proposed approaches are compared with an algebraic model found in the literature, specifically devised for annular gas liquid flow, using available experimental results. This also serves as a validation of the solution algorithm

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of the natural gas is growing year after year in the whole world and also in Brazil. It is verified that in the last five years the profile of natural gas consumption reached a great advance and investments had been carried through in this area. In the oil industry, the use of the natural gas for fuel in the drive of engines is usual for a long date. It is also used to put into motion equipment, or still, to generate electric power. Such engines are based on the motor cycle of combustion Otto, who requires a natural gas with well definite specification, conferring characteristic anti-detonating necessary to the equipment performance for projects based on this cycle. In this work, process routes and thermodynamic conditions had been selected and evaluated. Based on simulation assays carried out in commercial simulators the content of the methane index of the effluent gas were evaluated at various ranges of pressure, temperature, flowrate, molecular weight and chemical nature and composition of the absorbent. As final result, it was established a route based on process efficiency, optimized consumption of energy and absorbent. Thereby, it serves as base for the compact equipment conception to be used in locu into the industry for the removal of hydrocarbon from the natural gas produced

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural gas, although basically composed by light hydrocarbons, also presents in its composition gaseous contaminants such as CO2 (carbon dioxide) and H2S (hydrogen sulfide). Hydrogen sulfide, which commonly occurs in oil and gas exploration and production activities, besides being among the gases that are responsible by the acid rain and greenhouse effect, can also cause serious harm to health, leading even to death, and damages to oil and natural gas pipelines. Therefore, the removal of hydrogen sulfide will significantly reduce operational costs and will result in oil with best quality to be sent to refinery, thereby resulting in economical, environmental, and social benefits. These factors highlight the need for the development and improvement of hydrogen sulfide sequestrating agents to be used in the oil industry. Nowadays there are several procedures for hydrogen sulfide removal from natural gas used by the petroleum industry. However, they produce derivatives of amines that are harmful to the distillation towers, form insoluble precipitates that cause pipe clogging and produce wastes of high environmental impact. Therefore, the obtaining of a stable system, in inorganic or organic reaction media, that is able to remove hydrogen sulfide without forming by-products that affect the quality and costs of natural gas processing, transport and distribution is of great importance. In this context, the evaluation of the kinetics of H2S removal is a valuable procedure for the treatment of natural gas and disposal of the byproducts generated by the process. This evaluation was made in an absorption column packed with Raschig ring, where natural gas with H2S passes through a stagnant solution, being the contaminant absorbed by it. The content of H2S in natural gas in column output was monitored by an H2S analyzer. The comparison between the obtained curves and the study of the involved reactions have not only allowed to determine the efficiency and mass transfer controlling step of the involved processes but also make possible to effect a more detailed kinetic study and evaluate the commercial potential of each reagent

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation aims to assess the representativeness of the manual chilled mirror analyzer (model II Chanscope 13-1200-CN-2) used for the determination of condensed hydrocarbons of natural gas compared to the indirect methods, based on thermodynamic models equation of state. Additionally, it has been implemented in this study a model for calculating the dew point of natural gas. The proposed model is a modification of the equation of state of Peng-Robinson admits that the groups contribution as a strategy to calculate the binary interaction parameters kij (T) temperature dependence. Experimental data of the work of Brown et al. (2007) were used to compare the responses of the dew point of natural gas with thermodynamic models contained in the UniSim process simulator and the methodology implemented in this study. Then two natural gas compositions were studied, the first being a standard gas mixture gravimetrically synthesized and, second, a mixture of processed natural gas. These experimental data were also compared with the results presented by UniSim process simulator and the thermodynamic model implemented. However, data from the manual analysis results indicated significant differences in temperature, these differences were attributed to the formation of dew point of water, as we observed the appearance of moisture on the mirror surface cooling equipment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In energy systems, the balance of entrances, exits and losses are fundamental to rationalize the energy consumption, independently of the source (sun, natural gas, wind, water, firewood or oil). This estimate is important so much in the phase of project of the facilities, as in the exploration or operation. In the project phase it indicates the energy needs of the process and the contribution of the energy in the cost of the product and the capacity of storage of the fuel and in the operation phase it allows to evaluate the use of the energy in the process of it burns, showing the weak points that should suffer intervention to improve the efficiency. With this tool, it can be implemented routines of calculation of thermal balances in ovens of it burns of structural ceramic, in way to generate an optimized mathematical model for application in the current and promising structural ceramic brazilian industry. The ceramic oven in study is located in the metropolitan area of Natal (Rio Grande do Norte) and it is a continuous oven of the type wagons tunnel, converted of firewood for natural gas and it produces blocks of red ceramic. The energy balance was applied in the oven tunnel before and after the conversion and made the comparisons of the energy efficiencies (it burns to the firewood and it burns to natural gas), what showed that the gaseous fuel is more efficient when we burn structural ceramic in ovens tunnels. When we burn natural gas, the requested energy is smaller and better used. Tests were accomplished in the burned product that showed the best quality of the burned brick with natural gas. That quality improvement makes possible to accomplish new interventions for the most rational use of the energy in the oven tunnel of the Ceramic in study and in the industries of structural ceramic of the whole Brazil, that need control tools of burning and of quality

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During natural gas processing, water removal is considered as a fundamental step in that combination of hydrocarbons and water favors the formation of hydrates. The gas produced in the Potiguar Basin (Brazil) presents high water content (approximately 15000 ppm) and its dehydration is achieved via absorption and adsorption operations. This process is carried out at the Gas Treatment Unit (GTU) in Guamaré (GMR), in the State of Rio Grande do Norte. However, it is a costly process, which does not provide satisfactory results when water contents as low as 0.5 ppm are required as the exit of the GTU. In view of this, microemulsions research is regarded as an alternative to natural gas dehydration activities. Microemulsions can be used as desiccant fluids because of their unique proprieties, namely solubilization enhancement, reduction in interfacial tensions and large interfacial area between continuous and dispersed phases. These are actually important parameters to ensure the efficiency of an absorption column. In this work, the formulation of the desiccant fluid was determined via phases diagram construction, employing there nonionic surfactants (RDG 60, UNTL L60 and AMD 60) and a nonpolar fluid provided by Petrobras GMR (Brazil) typically comprising low-molecular weight liquid hydrocarbons ( a solvent commonly know as aguarrás ). From the array of phases diagrams built, four representative formulations have been selected for providing better results: 30% RDG 60-70% aguarrás; 15% RDG 60-15% AMD 60-70% aguarrás, 30% UNTL L60-70% aguarrás, 15% UNTL L60-15% AMD 60-70% aguarrás. Since commercial natural gas is already processed, and therefore dehydrated, it was necessary to moister some sample prior to all assays. It was then allowed to cool down to 13ºC and interacted with wet 8-12 mesh 4A molecular sieve, thus enabling the generation of gas samples with water content (approximately 15000 ppm). The determination of the equilibrium curves was performed based on the dynamic method, which stagnated liquid phase and gas phase at a flow rate of 200 mL min-1. The hydrodynamic study was done with the aim of established the pressure drop and dynamic liquid hold-up. This investigation allowed are to set the working flow rates at 840 mL min-1 for the gas phase and 600 mLmin-1 for the liquid phase. The mass transfer study indicated that the system formed by UNTL L60- turpentine-natural gas the highest value of NUT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural gas, although basically composed by light hydrocarbons, also presents contaminant gases in its composition, such as CO2 (carbon dioxide) and H2S (hydrogen sulfide). The H2S, which commonly occurs in oil and gas exploration and production activities, causes damages in oil and natural gas pipelines. Consequently, the removal of hydrogen sulfide gas will result in an important reduction in operating costs. Also, it is essential to consider the better quality of the oil to be processed in the refinery, thus resulting in benefits in economic, environmental and social areas. All this facts demonstrate the need for the development and improvement in hydrogen sulfide scavengers. Currently, the oil industry uses several processes for hydrogen sulfide removal from natural gas. However, these processes produce amine derivatives which can cause damage in distillation towers, can cause clogging of pipelines by formation of insoluble precipitates, and also produce residues with great environmental impact. Therefore, it is of great importance the obtaining of a stable system, in inorganic or organic reaction media, able to remove hydrogen sulfide without formation of by-products that can affect the quality and cost of natural gas processing, transport, and distribution steps. Seeking the study, evaluation and modeling of mass transfer and kinetics of hydrogen removal, in this study it was used an absorption column packed with Raschig rings, where the natural gas, with H2S as contaminant, passed through an aqueous solution of inorganic compounds as stagnant liquid, being this contaminant gas absorbed by the liquid phase. This absorption column was coupled with a H2S detection system, with interface with a computer. The data and the model equations were solved by the least squares method, modified by Levemberg-Marquardt. In this study, in addition to the water, it were used the following solutions: sodium hydroxide, potassium permanganate, ferric chloride, copper sulfate, zinc chloride, potassium chromate, and manganese sulfate, all at low concentrations (»10 ppm). These solutions were used looking for the evaluation of the interference between absorption physical and chemical parameters, or even to get a better mass transfer coefficient, as in mixing reactors and absorption columns operating in counterflow. In this context, the evaluation of H2S removal arises as a valuable procedure for the treatment of natural gas and destination of process by-products. The study of the obtained absorption curves makes possible to determine the mass transfer predominant stage in the involved processes, the mass transfer volumetric coefficients, and the equilibrium concentrations. It was also performed a kinetic study. The obtained results showed that the H2S removal kinetics is greater for NaOH. Considering that the study was performed at low concentrations of chemical reagents, it was possible to check the effect of secondary reactions in the other chemicals, especially in the case of KMnO4, which shows that your by-product, MnO2, acts in H2S absorption process. In addition, CuSO4 and FeCl3 also demonstrated to have good efficiency in H2S removal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work is to identify, to chart and to explain the evolution of the soil occupation and the envirionment vulnerability of the areas of Canto do Amaro and Alto da Pedra, in the city of Mossoró-RN, having as base analyzes it multiweather of images of orbital remote sensors, the accomplishment of extensive integrated works of field to a Geographic Information System (GIS). With the use of inserted techniques of it analyzes space inserted in a (GIS), and related with the interpretation and analyzes of products that comes from the Remote Sensoriamento (RS.), make possible resulted significant to reach the objectives of this works. Having as support for the management of the information, the data set gotten of the most varied sources and stored in digital environment, it comes to constitute the geographic data base of this research. The previous knowledge of the spectral behavior of the natural or artificial targets, and the use of algorithms of Processing of Digital images (DIP), it facilitates the interpretation task sufficiently and searchs of new information on the spectral level. Use as background these data, was generated a varied thematic cartography was: Maps of Geology, Geomorfológicals Units soils, Vegetation and Use and Occupation of the soil. The crossing in environment SIG, of the above-mentioned maps, generated the maps of Natural and Vulnerability envirionmental of the petroliferous fields of I Canto do Amaro and Alto da Pedra-RN, working in an ambient centered in the management of waters and solid residuos, as well as the analysis of the spatial data, making possible then a more complex analysis of the studied area

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The underground natural gas found associated or not with oil is characterized by a mixture of hydrocarbons and residual components such as carbon dioxide (CO2), nitrogen gas (N2) and hydrogen sulfide (H2S), called contaminants. The H2S especially promotes itself as a contaminant of natural gas to be associated with corrosion of pipelines, to human toxicity and final applications of Natural Gas (NG). The sulfur present in the GN must be fully or partially removed in order to meet the market specifications, security, transport or further processing. There are distinct and varied methods of desulfurization of natural gas processing units used in Natural Gas (UPGN). In order to solve these problems have for example the caustic washing, absorption, the use of membranes and adsorption processes is costly and great expenditure of energy. Arises on such findings, the need for research to active processes of economic feasibility and efficiency. This work promoted the study of the adsorption of sulfide gas in polymer matrices hydrogen pure and modified. The substrates of Poly(vinyl chloride) (PVC), poly(methyl methacrylate) (PMMA) and sodium alginate (NaALG) were coated with vanadyl phosphate compounds (VOPO4.2H2O), vanadium pentoxide (V2O5), rhodamine B (C28H31N2O3Cl) and ions Co2+ and Cu2+, aiming to the adsorption of hydrogen sulfide gas (H2S). The adsorption tests were through a continuous flow of H2S in a column system (fixed bed reactor) adsorption on a laboratory scale. The techniques used to characterize the adsorbents were Infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), X-ray fluorescence (XRF), the X-ray diffraction (XRD) electron microscopy (SEM). Such work indicates, the results obtained, the adsorbents modified PMMA, PVC and NaALG have a significant adsorptive capacity. The matrix that stood out and had the best adsorption capacity, was to ALG modified Co2+ with a score of 12.79 mg H2S / g matrix