891 resultados para HMG-CoA reductase inhibition


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leucine-rich nuclear export signals (NESs) are recognized by the NES receptor exportin 1 and are central to the export of multiple shuttling proteins and RNAs. The export of messenger RNA in vertebrates was, however, thought to occur by a different pathway, because inhibition by injection of a synthetic Rev NES conjugate could not be demonstrated. Here we find that peptide conjugates composed of the NES of either protein kinase A inhibitor protein (PKI) or the HIV-1 Rev protein, when coupled to human serum albumin, are potent inhibitors of mRNA and small nuclear RNA export. These results provide direct evidence that mRNA export in vertebrates depends on interactions between an NES and its cognate NES receptors. PKI NES conjugates are significantly more efficient at inhibiting RNA export than are REV NES conjugates, indicating that different NESs may have different abilities to promote protein and RNA export. Surprisingly, an expected control conjugate containing the mutant Rev NES sequence M10 strongly inhibited the export of intronless dihydrofolate reductase mRNA. Nuclear injection of NES peptide conjugates led to mislocalization to the nucleus of 10–20% of the cytoplasmic Ran GTPase-binding protein (RanBP1) indicating that RanBP1 shuttles between the nucleus and the cytoplasm via an NES pathway. These results demonstrate that in vertebrates the export of mRNA, like that of small nuclear RNA, 5S rRNA, and transport factors such as RanBP1, employs NES-mediated molecular machinery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animals, including humans, express two isoforms of acetyl-CoA carboxylase (EC 6.4.1.2), ACC1 (Mr = 265 kDa) and ACC2 (Mr = 280 kDa). The predicted amino acid sequence of ACC2 contains an additional 136 aa relative to ACC1, 114 of which constitute the unique N-terminal sequence of ACC2. The hydropathic profiles of the two ACC isoforms generally are comparable, except for the unique N-terminal sequence in ACC2. The sequence of amino acid residues 1–20 of ACC2 is highly hydrophobic, suggesting that it is a leader sequence that targets ACC2 for insertion into membranes. The subcellular localization of ACC2 in mammalian cells was determined by performing immunofluorescence microscopic analysis using affinity-purified anti-ACC2-specific antibodies and transient expression of the green fluorescent protein fused to the C terminus of the N-terminal sequences of ACC1 and ACC2. These analyses demonstrated that ACC1 is a cytosolic protein and that ACC2 was associated with the mitochondria, a finding that was confirmed further by the immunocolocalization of a known human mitochondria-specific protein and the carnitine palmitoyltransferase 1. Based on analyses of the fusion proteins of ACC–green fluorescent protein, we concluded that the N-terminal sequences of ACC2 are responsible for mitochondrial targeting of ACC2. The association of ACC2 with the mitochondria is consistent with the hypothesis that ACC2 is involved in the regulation of mitochondrial fatty acid oxidation through the inhibition of carnitine palmitoyltransferase 1 by its product malonyl-CoA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apicomplexan parasites such as Toxoplasma gondii contain a primitive plastid, the apicoplast, whose genome consists of a 35-kb circular DNA related to the plastid DNA of plants. Plants synthesize fatty acids in their plastids. The first committed step in fatty acid synthesis is catalyzed by acetyl-CoA carboxylase (ACC). This enzyme is encoded in the nucleus, synthesized in the cytosol, and transported into the plastid. In the present work, two genes encoding ACC from T. gondii were cloned and the gene structure was determined. Both ORFs encode multidomain proteins, each with an N-terminal extension, compared with the cytosolic ACCs from plants. The N-terminal extension of one isozyme, ACC1, was shown to target green fluorescent protein to the apicoplast of T. gondii. In addition, the apicoplast contains a biotinylated protein, consistent with the assertion that ACC1 is localized there. The second ACC in T. gondii appears to be cytosolic. T. gondii mitochondria also contain a biotinylated protein, probably pyruvate carboxylase. These results confirm the essential nature of the apicoplast and explain the inhibition of parasite growth in cultured cells by herbicides targeting ACC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

cDNA fragments encoding the carboxyltransferase domain of the multidomain plastid acetyl-CoA carboxylase (ACCase) from herbicide-resistant maize and from herbicide-sensitive and herbicide-resistant Lolium rigidum were cloned and sequenced. A Leu residue was found in ACCases from herbicide-resistant plants at a position occupied by Ile in all ACCases from sensitive grasses studied so far. Leu is present at the equivalent position in herbicide-resistant ACCases from other eukaryotes. Chimeric ACCases containing a 1000-aa fragment of two ACCase isozymes found in a herbicide-resistant maize were expressed in a yeast ACC1 null mutant to test herbicide sensitivity of the enzyme in vivo and in vitro. One of the enzymes was resistant/tolerant, and one was sensitive to haloxyfop and sethoxydim, rendering the gene-replacement yeast strains resistant and sensitive to these compounds, respectively. The sensitive enzyme has an Ile residue, and the resistant one has a Leu residue at the putative herbicide-binding site. Additionally, a single Ile to Leu replacement at an equivalent position changes the wheat plastid ACCase from sensitive to resistant. The effect of the opposite substitution, Leu to Ile, makes Toxoplasma gondii apicoplast ACCase resistant to haloxyfop and clodinafop. In this case, inhibition of the carboxyltransferase activity of ACCase (second half-reaction) of a large fragment of the Toxoplasma enzyme expressed in Escherichia coli was tested. The critical amino acid residue is located close to a highly conserved motif of the carboxyltransferase domain, which is probably a part of the enzyme active site, providing the basis for the activity of fop and dim herbicides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tyrosine nitration of proteins has been observed in diverse inflammatory conditions and has been linked to the presence of reactive nitrogen species. From many in vitro experiments, it is apparent that tyrosine nitration may alter the function of proteins. A limited number of experiments under in vivo conditions also demonstrate that protein nitration is associated with altered cellular processes. To understand the association of protein nitration with the pathogenic mechanism of the disease, it is essential to identify specific protein targets of nitration with in vivo or intact tissue models. Using anti-nitrotyrosine antibodies, we demonstrated the accumulation of nitrotyrosine in a 52-kDa protein in rat kidney after lipopolysaccharide treatment. The 52-kDa protein was purified and identified with partial sequence as succinyl-CoA:3-oxoacid CoA-transferase (SCOT; EC 2.8.3.5). Western blot analysis revealed that the nitration of this mitochondrial enzyme increased in the kidneys and hearts of lipopolysaccharide-treated rats, whereas its catalytic activity decreased. These data suggest that tyrosine nitration may be a mechanism for the inhibition of SCOT activity in inflammatory conditions. SCOT is a key enzyme for ketone body utilization. Thus, tyrosine nitration of the enzyme with sepsis or inflammation may explain the altered metabolism of ketone bodies present in these disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When the human prostate cancer cell line, LNCaP 104-S, the growth of which is stimulated by physiological levels of androgen, is cultured in androgen-depleted medium for > 100 passages, the cells, now called LNCaP 104-R2, are proliferatively repressed by low concentrations of androgens. LNCaP 104-R2 cells formed tumors in castrated male athymic nude mice. Testosterone propionate (TP) treatment prevented LNCaP 104-R2 tumor growth and caused regression of established tumors in these mice. Such a tumor-suppressive effect was not observed with tumors derived from LNCaP 104-S cells or androgen receptor-negative human prostate cancer PC-3 cells. 5 alpha-Dihydrotestosterone, but not 5 beta-dihydrotestosterone, 17 beta-estradiol, or medroxyprogesterone acetate, also inhibited LNCaP 104-R2 tumor growth. Removal of TP or implantation of finasteride, a 5 alpha-reductase inhibitor, in nude mice bearing TP implants resulted in the regrowth of LNCaP 104-R2 tumors. Within 1 week after TP implantation, LNCaP 104-R2 tumors exhibited massive necrosis with severe hemorrhage. Three weeks later, these tumors showed fibrosis with infiltration of chronic inflammatory cells and scattered carcinoma cells exhibiting degeneration. TP treatment of mice with LNCaP 104-R2 tumors reduced tumor androgen receptor and c-myc mRNA levels but increased prostate-specific antigen in serum- and prostate-specific antigen mRNA in tumors. Although androgen ablation has been the standard treatment for metastatic prostate cancer for > 50 years, our study shows that androgen supplementation therapy may be beneficial for treatment of certain types of human prostate cancer and that the use of 5 alpha-reductase inhibitors, such as finasteride or anti-androgens, in the general treatment of metastatic prostate cancer may require careful assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study the effect of apoptosis on gene amplification, we have constructed HeLa S3 cell lines in which the expression of bcl-2 (BCL2) can be controlled by tetracycline in the growth medium. Induction of Bcl-2 expression caused a temporary delay of apoptosis and resulted in roughly a 3-fold increase in the frequency of resistant colonies when cells were selected with trimetrexate. This resistance was due to amplification of the dihydrofolate reductase gene. Cells grown out of the pooled resistant colonies retained the same level of resistance to trimetrexate whether Bcl-2 was induced or repressed, consistent with the theory that Bcl-2 functions by facilitating gene amplification, rather than being the resistance mechanism per se. Pretreating cells with aphidicolin is another method to increase gene amplification frequency. When Bcl-2-expressing cells were pretreated with aphidicolin, the resulting increase in gene amplification frequency was approximately the product of the increases caused by aphidicolin pretreatment or Bcl-2 expression alone, indicating that Bcl-2 increases gene amplification through a mechanism independent of that of aphidicolin pretreatment. These results are consistent with the concept that gene amplification occurs at a higher frequency during drug-induced cell cycle perturbation. Bcl-2 evidently increases the number of selected amplified colonies by prolonging cell survival during the perturbation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied inhibition of growth of the malaria parasite Plasmodium falciparum in in vitro culture using antisense (AS) oligodeoxynucleotides (ODNs) against different target genes. W2 and W2mef strains of drug-resistant parasites were exposed to AS ODNs over 48 hr, and growth was determined by microscopic examination and [3H]hypoxanthine incorporation. At ODN concentrations of 1 microM, phosphorothioate (PS) ODNs inhibited growth in a target-independent manner. However, between 0.5 and 0.005 microM, ODNs against dihydrofolate reductase, dihydropteroate synthetase, ribonucleotide reductase, the schizont multigene family, and erythrocyte binding antigen EBA175 significantly inhibited growth compared with a PS AS ODN against human immunodeficiency virus, two AS ODNs containing eight mismatches, or the sense strand controls (P < 0.0001). The IC50 was approximately 0.05 microM, whereas that for non-sequence-specific controls was 15-fold higher. PS AS ODNs against DNA polymerase alpha showed less activity than that for other targets, whereas a single AS ODN against triose-phosphate isomerase did not differ significantly from controls. We conclude that at concentrations below 0.5 microM, PS AS ODNs targeted against several malarial genes significantly inhibit growth of drug-resistant parasites in a nucleotide sequence-dependent manner. This technology represents an alternative method for identifying malarial genes as potential drug targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellular levels of free arachidonic acid (AA) are controlled by a deacylation/reacylation cycle whereby the fatty acid is liberated by phospholipases and reincorporated by acyltransferases. We have found that the esterification of AA into membrane phospholipids is a Ca(2+)-independent process and that it is blocked up to 60-70% by a bromoenollactone (BEL) that is a selective inhibitor of a newly discovered Ca(2+)-independent phospholipase A2 (PLA2) in macrophages. The observed inhibition correlates with a decreased steady-state level of lysophospholipids as well as with the inhibition of the Ca(2+)-independent PLA2 activity in these cells. This inhibition is specific for the Ca(2+)-independent PLA2 in that neither group IV PLA2, group II PLA2, arachidonoyl-CoA synthetase, lysophospholipid:arachidonoyl-CoA acyltransferase, nor CoA-independent transacylase is affected by treatment with BEL. Moreover, two BEL analogs that are not inhibitors of the Ca(2+)-independent PLA2--namely a bromomethyl ketone and methyl-BEL--do not inhibit AA incorporation into phospholipids. Esterification of palmitic acid is only slightly affected by BEL, indicating that de novo synthetic pathways are not inhibited by BEL. Collectively, the data suggest that the Ca(2+)-independent PLA2 in P388D1 macrophages plays a major role in regulating the incorporation of AA into membrane phospholipids by providing the lysophospholipid acceptor employed in the acylation reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A specific requirement for coenzyme Q in the maintenance of trans-plasma-membrane redox activity is demonstrated. Extraction of coenzyme Q from membranes resulted in inhibition of NADH-ascorbate free radical reductase (trans electron transport), and addition of coenzyme Q10 restored the activity. NADH-cytochrome c oxidoreductase (cis electron transport) did not respond to the coenzyme Q status. Quinone analogs inhibited trans-plasma-membrane redox activity, and the inhibition was reversed by coenzyme Q. A 34-kDa coenzyme Q reductase (p34) has been purified from pig-liver plasma membranes. The isolated enzyme was sensitive to quinone-site inhibitors. p34 catalyzed the NADH-dependent reduction of coenzyme Q10 after reconstitution in phospholipid liposomes. When plasma membranes were supplemented with extra p34, NADH-ascorbate free radical reductase was activated but NADH-cytochrome c oxidoreductase was not. These results support the involvement of p34 as a source of electrons for the trans-plasma-membrane redox system oxidizing NADH and support coenzyme Q as an intermediate electron carrier between NADH and the external acceptor ascorbate free radical.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis comprises two main objectives. The first objective involved the stereochemical studies of chiral 4,6-diamino-1-aryl-1,2-dihydro-s-triazines and an investigation on how the different conformations of these stereoisomers may affect their binding affinity to the enzyme dihydrofolate reductase (DHFR). The ortho-substituted 1-aryl-1,2-dihydro-s-triazines were synthesised by the three component method. An ortho-substitution at the C6' position was observed when meta-azidocycloguanil was decomposed in acid. The ortho-substituent restricts free rotation and this gives rise to atropisomerism. Ortho-substituted 4,6-diamino-1-aryl-2-ethyl-1,2-dihydro-2-methyl-s-triazine contains two elements of chirality and therefore exists as four stereoisomers: (S,aR), (R,aS), (R,aR) and (S,aS). The energy barriers to rotation of these compounds were calculated by a semi-empirical molecular orbital program called MOPAC and they were found to be in excess of 23 kcal/mol. The diastereoisomers were resolved and enriched by C18 reversed phase h.p.l.c. Nuclear overhauser effect experiments revealed that (S,aR) and (R,aS) were the more stable pair of stereoisomers and therefore existed as the major component. The minor diastereoisomers showed greater binding affinity for the rat liver DHFR in in vitro assay. The second objective entailed the investigation into the possibility of retaining DHFR inhibitory activity by replacing the classical diamino heterocyclic moiety with an amidinyl group. 4-Benzylamino-3-nitro-N,N-dimethyl-phenylamidine was synthesised in two steps. One of the two phenylamidines indicated weak inhibition against the rat liver DHFR. This weak activity may be due to the failure of the inhibitor molecule to form strong hydrogen bonds with residue Glu-30 at the active site of the enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue damage resulting from the extracellular production of HOCl (hypochlorous acid) by the MPO (myeloperoxidase)-hydrogen peroxide-chloride system of activated phagocytes is implicated as a key event in the progression of a number of human inflammatory diseases. Consequently, there is considerable interest in the development of therapeutically useful MPO inhibitors. Nitroxides are well established antioxidant compounds of low toxicity that can attenuate oxidative damage in animal models of inflammatory disease. They are believed to exert protective effects principally by acting as superoxide dismutase mimetics or radical scavengers. However, we show here that nitroxides can also potently inhibit MPO-mediated HOCl production, with the nitroxide 4-aminoTEMPO inhibiting HOCl production by MPO and by neutrophils with IC50 values of approx. 1 and 6 μM respectively. Structure–activity relationships were determined for a range of aliphatic and aromatic nitroxides, and inhibition of oxidative damage to two biologically-important protein targets (albumin and perlecan) are demonstrated. Inhibition was shown to involve one-electron oxidation of the nitroxides by the compound I form of MPO and accumulation of compound II. Haem destruction was also observed with some nitroxides. Inhibition of neutrophil HOCl production by nitroxides was antagonized by neutrophil-derived superoxide, with this attributed to superoxide-mediated reduction of compound II. This effect was marginal with 4-aminoTEMPO, probably due to the efficient superoxide dismutase-mimetic activity of this nitroxide. Overall, these data indicate that nitroxides have considerable promise as therapeutic agents for the inhibition of MPO-mediated damage in inflammatory diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of series of poly(acrylic acids) (PAA) of differing end-groups and molecular weights prepared using atom transfer radical polymerization were used as inhibitors for the crystallization of calcium oxalate at 23 and 80°C. As measured by turbidimetry and conductivity and as expected from previous reports, all PAA series were most effective for inhibition of crystallization at molecular weights of 1500–4000. However, the extent of inhibition was in general strongly dependent on the hydrophobicity and molecular weight of the end-group. These results may be explicable in terms of adsorption/desorption of PAA to growth sites on crystallites. The overall effectiveness of the series didn't follow a simple trend with end-group hydrophobicity, suggesting self-assembly behavior or a balance between adsorption and desorption rates to crystallite surfaces may be critical in the mechanism of inhibition of calcium oxalate crystallization.