921 resultados para HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY
Resumo:
A ciência, principalmente a área da Farmacologia, vem ao longo dos anos desenvolvendo medicamentos eficazes e seguros para o tratamento médico de infecções bacterianas e seu sucesso reduz cada vez mais as mortalidades causadas por estes e outros microrganismos. Logo, a busca por novos compostos moleculares para o uso terapêutico é de grande importância para ampliar a gama de substâncias eficientes, buscando-se também menos efeitos colaterais, que podem ser disponibilizadas no mercado. Visando encontrar estes novos componentes, recorre-se às informações presentes em diversas áreas, principalmente na Etnobotânica, ciência que explora, verifica e armazena o conhecimento popular adquirido pelo homem através da sua interação com as plantas, sobre suas propriedades benéficas ou não, e usos mais comuns. A família Aristolochiales é uma das mais significativas no Brasil, chega a possuir 475 espécies. Este trabalho busca caracterizar o(s) composto(s) bactericidas presentes em A. gigantea através de extrações em hexano e acetonitrila como solventes, utilizando a HPLC (Hight Pressure Liquid Chromatography) para obter novas informações mais detalhadas destes. Testes de antibiograma averiguaram a eficiência das amostras durante os expermetos para Escherichia coli e Staphylococcus aureus
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Validation of analytical methodology for quantification of cefazolin sodium by liquid chromatography
Resumo:
A reversed-phase high performance liquid chromatography method was validated for the determination of cefazolin sodium in lyophilized powder for solution for injection to be applied for quality control in pharmaceutical industry. The liquid chromatography method was conducted on a Zorbax Eclipse Plus C18 column (250 x 4.6 mm, 5 μm), maintained at room temperature. The mobile phase consisted of purified water: acetonitrile (60: 40 v/v), adjusted to pH 8 with triethylamine. The flow rate was of 0.5 mL min-1 and effluents were monitored at 270 nm. The retention time for cefazolin sodium was 3.6 min. The method proved to be linear (r2 =0.9999) over the concentration range of 30-80 µg mL-1. The selectivity of the method was proven through degradation studies. The method demonstrated satisfactory results for precision, accuracy, limits of detection and quantitation. The robustness of this method was evaluated using the Plackett–Burman fractional factorial experimental design with a matrix of 15 experiments and the statistical treatment proposed by Youden and Steiner. Finally, the proposed method could be also an advantageous option for the analysis of cefazolin sodium, contributing to improve the quality control and to assure the therapeutic efficacy
Resumo:
A universal and robust analytical method for the determination of Δ9-tetrahydrocannabinol (THC) and two of its metabolites Δ9-(11-OH)-tetrahydrocannabinol (11-OH-THC) and 11-nor-Δ9-carboxy-tetrahydrocannabinol (THC-COOH) in human whole blood was developed and validated for use in forensic toxicology. Protein precipitation, integrated solid phase extraction and on-line enrichment followed by high-performance liquid chromatography separation and detection with a triple quadrupole mass spectrometer were combined. The linear ranges used for the three cannabinoids were from 0.5 to 20 ng/mL for THC and 11-OH-THC and from 2.5 to 100 ng/mL for THC-COOH, therefore covering the requirements for forensic use. Correlation coefficients of 0.9980 or better were achieved for all three analytes. No relevant hydrolysis was observed for THC-COOH glucuronide with this procedure--in contrast to our previous GC-MS procedure, which obviously lead to an artificial increase of the THC-COOH concentration due to the hydrolysis of the glucuronide-conjugate occurring at high pH during the phase-transfer catalyzed methylation step.
Resumo:
New directly acting antivirals (DAAs) that inhibit hepatitis C virus (HCV) replication are increasingly used for the treatment of chronic hepatitis C. A marked pharmacokinetic variability and a high potential for drug-drug interactions between DAAs and numerous drug classes have been identified. In addition, ribavirin (RBV), commonly associated with hemolytic anemia, often requires dose adjustment, advocating for therapeutic drug monitoring (TDM) in patients under combined antiviral therapy. However, an assay for the simultaneous analysis of RBV and DAAs constitutes an analytical challenge because of the large differences in polarity among these drugs, ranging from hydrophilic (RBV) to highly lipophilic (telaprevir [TVR]). Moreover, TVR is characterized by erratic behavior on standard octadecyl-based reversed-phase column chromatography and must be separated from VRT-127394, its inactive C-21 epimer metabolite. We have developed a convenient assay employing simple plasma protein precipitation, followed by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) for the simultaneous determination of levels of RBV, boceprevir, and TVR, as well as its metabolite VRT-127394, in plasma. This new, simple, rapid, and robust HPLC-MS/MS assay offers an efficient method of real-time TDM aimed at maximizing efficacy while minimizing the toxicity of antiviral therapy.
Resumo:
We report that silver ion HPLC provides remarkable separations of C27 sterols differing only in the number or location of olefinic double bonds. This technique has been extended to LC-MS, analysis of purified components by GC, GC-MS, and 1H NMR, and to its use on a semipreparative scale. The application of this methodology for the demonstration of the catalysis, by rat liver microsomes, of the conversion of 7-dehydrocholesterol to cholesta-5,8-dien-3 beta-ol is also presented.
Resumo:
The study was a comparison of bioassay and HPLC analysis of artesunate (ARTS) and dihydroartemisinin (DHA) in plasma. ARTS and DHA in plasma samples from patients treated with ARTS were quantified by HPLC and expressed as DHA. DHA-equivalents in the same plasma samples were measured using a standardised parasite culture technique. DHA concentrations estimated by both methods were highly correlated (bioassay = 0.96 x HPLC + 11.0; r(2) = 0.92). At high concentrations ( > 12 000 nmol/l) bioassay sometimes overestimated DHA. Bioassay of active drug in plasma correlates well with specific chemical analysis by HPLC. ARTS and DHA appear to account for the total antimalarial activity in plasma after ARTS administration. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
During the analytical method development for BAY 11-7082 ((E)-3-[4-methylphenylsulfonyl]-2-propenenitrile), using HPLC-MS-MS and HPLC-UV, we observed that the protein removal process (both ultrafiltration and precipitation method using organic solvents) prior to HPLC brought about a significant reduction in the concentration of this compound. The use of a structurally similar internal standard, BAY 11-7085 ((E)-3-[4-t-butylphenylsulfonyl]-2-propenenitrile), was not effective in compensating for the loss of analyte as the extent of reduction was different to that of the analyte. We present here a systematic investigation of this problem and a new validated method for the determination of BAY 11-7082. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Liquid-level sensing technologies have attracted great prominence, because such measurements are essential to industrial applications, such as fuel storage, flood warning and in the biochemical industry. Traditional liquid level sensors are based on electromechanical techniques; however they suffer from intrinsic safety concerns in explosive environments. In recent years, given that optical fiber sensors have lots of well-established advantages such as high accuracy, costeffectiveness, compact size, and ease of multiplexing, several optical fiber liquid level sensors have been investigated which are based on different operating principles such as side-polishing the cladding and a portion of core, using a spiral side-emitting optical fiber or using silica fiber gratings. The present work proposes a novel and highly sensitive liquid level sensor making use of polymer optical fiber Bragg gratings (POFBGs). The key elements of the system are a set of POFBGs embedded in silicone rubber diaphragms. This is a new development building on the idea of determining liquid level by measuring the pressure at the bottom of a liquid container, however it has a number of critical advantages. The system features several FBG-based pressure sensors as described above placed at different depths. Any sensor above the surface of the liquid will read the same ambient pressure. Sensors below the surface of the liquid will read pressures that increase linearly with depth. The position of the liquid surface can therefore be approximately identified as lying between the first sensor to read an above-ambient pressure and the next higher sensor. This level of precision would not in general be sufficient for most liquid level monitoring applications; however a much more precise determination of liquid level can be made by linear regression to the pressure readings from the sub-surface sensors. There are numerous advantages to this multi-sensor approach. First, the use of linear regression using multiple sensors is inherently more accurate than using a single pressure reading to estimate depth. Second, common mode temperature induced wavelength shifts in the individual sensors are automatically compensated. Thirdly, temperature induced changes in the sensor pressure sensitivity are also compensated. Fourthly, the approach provides the possibility to detect and compensate for malfunctioning sensors. Finally, the system is immune to changes in the density of the monitored fluid and even to changes in the effective force of gravity, as might be obtained in an aerospace application. The performance of an individual sensor was characterized and displays a sensitivity (54 pm/cm), enhanced by more than a factor of 2 when compared to a sensor head configuration based on a silica FBG published in the literature, resulting from the much lower elastic modulus of POF. Furthermore, the temperature/humidity behavior and measurement resolution were also studied in detail. The proposed configuration also displays a highly linear response, high resolution and good repeatability. The results suggest the new configuration can be a useful tool in many different applications, such as aircraft fuel monitoring, and biochemical and environmental sensing, where accuracy and stability are fundamental. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
A high performance liquid-level sensor based on microstructured polymer optical fiber Bragg grating (mPOFBG) array sensors is reported in detail. The sensor sensitivity is found to be 98pm/cm of liquid, enhanced by more than a factor of 9 compared to a reported silica fiber-based sensor.
Resumo:
The goal of this project was to develop a rapid separation and detection method for analyzing organic compounds in smokeless powders and then test its applicability on gunshot residue (GSR) samples. In this project, a total of 20 common smokeless powder additives and their decomposition products were separated by ultra performance liquid chromatography (UPLC) and confirmed by tandem mass spectrometry (MS/MS) using multiple reaction monitoring mode (MRM). Some of the targeted compounds included diphenylamines, centralites, nitrotoluenes, nitroglycerin, and various phthalates. The compounds were ionized in the MS source using simultaneous positive and negative electrospray ionization (ESI) with negative atmospheric pressure chemical ionization (APCI) in order to detect all compounds in a single analysis. The developed UPLC/MS/MS method was applied to commercially available smokeless powders and gunshot residue samples recovered from the hands of shooters, spent cartridges, and smokeless powder retrieved from unfired cartridges. Distinct compositions were identified for smokeless powders from different manufacturers and from separate manufacturing lots. The procedure also produced specific chemical profiles when tested on gunshot residues from different manufacturers. Overall, this thesis represents the development of a rapid and reproducible procedure capable of simultaneously detecting the widest possible range of components present in organic gunshot residue.^
Resumo:
Activated carbon was prepared from date pits via chemical activation with H3PO4. The effects of activating agent concentration and activation temperature on the yield and surface area were studied. The optimal activated carbon was prepared at 450 °C using 55 % H3PO4. The prepared activated carbon was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric-differential thermal analysis, and Brunauer, Emmett, and Teller (BET) surface area. The prepared date pit-based activated carbon (DAC) was used for the removal of bromate (BrO3 −). The concentration of BrO3 − was determined by ultra-performance liquid chromatography-mass tandem spectrometry (UPLC-MS/MS). The experimental equilibrium data for BrO3 − adsorption onto DAC was well fitted to the Langmuir isotherm model and showed maximum monolayer adsorption capacity of 25.64 mg g−1. The adsorption kinetics of BrO3 − adsorption was very well represented by the pseudo-first-order equation. The analytical application of DAC for the analysis of real water samples was studied with very promising results.
Resumo:
Purpose: To study the in vivo metabolism of kurarinone, a lavandulyl flavanone which is a major constituent of Kushen and a marker compound with many biological activities, using ultra-performance liquid chromatography coupled with linear ion trap Orbitrap mass spectrometry (UPLC-LTQ-Orbitrap- MS). Methods: Six male Sprague-Dawley rats were randomly divided into two groups. First, kurarinone was suspended in 0.5 % carboxymethylcellulose sodium (CMC-Na) aqueous solution, and was given to rats (n = 3, 2 mL for each rat) orally at 50 mg/kg. A 2 mL aliquot of 0.5 % CMC-Na aqueous solution was administered to the rats in the control group. Next, urine samples were collected over 0-24 h after the oral administrations and all urine samples were pretreated by a solid phase extraction (SPE) method. Finally, all samples were analyzed by a UPLC-LTQ-Orbitrap mass spectrometry coupled with an electrospray ionization source (ESI) that was operated in the negative ionization mode. Results: A total of 11 metabolites, including the parent drug and 10 phase II metabolites in rat urine, were first detected and interpreted based on accurate mass measurement, fragment ions, and chromatographic retention times. The results were based on the assumption that kurarinone glucuronidation was the dominant metabolite that was excreted in rat urine. Conclusion: The results from this work indicate that kurarinone in vivo is typically transformed to nontoxic glucuronidation metabolites, and these findings may help to characterize the metabolic profile of kurarinone.
Resumo:
A high-performance liquid chromatographic method with triple-quadrupole mass spectrometry detection (LC-MS-MS) was developed and validated for the first time for the simultaneous quantification of zopiclone and its metabolites in rat plasma samples. The analytes were isolated from rat plasma by liquid-liquid extraction and separated using a chiral stationary phase based on an amylose derivative, Chiralpak ADR-H column, and ethanol-methanol-acetonitrile (50:45:5, v/v/v) plus 0.025% diethylamine as the mobile phase, at a flow-rate of 1.0 mL min(-1). Moclobemide was used as the internal standard. The developed method was linear over the concentration range of 7.5-500 ng mL(-1). The mean absolute recoveries were 74.6 and 75.7; 61.6 and 56.9; 72.5, and 70.7 for zopiclone enantiomers, for N-desmethyl zopiclone enantiomers and for zopiclone-N-oxide enantiomers, respectively, and 75.9 for the internal standard. Precision and accuracy were within acceptable levels of confidence (<15%). The method application in a pilot study of zopiclone kinetic disposition in rats showed that the levels of (+)-(S)-zopiclone were always higher than those of (-)-R-zopiclone. Higher concentrations were also observed for (+)-(S)-N-desmethyl zopiclone and (+)-(S)-N-oxide zopiclone, confirming the stereoselective disposition of zopiclone.