389 resultados para HEISENBERG PYROCHLORE ANTIFERROMAGNET


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We revisit the assignment of Raman phonons of rare-earth titanates by performing Raman measurements on single crystals of O18 isotope-rich spin ice Dy2Ti2O718 and nonmagnetic Lu2Ti2O718 pyrochlores and compare the results with their O16 counterparts. We show that the low-wavenumber Raman modes below 250 cm-1 are not due to oxygen vibrations. A mode near 200 cm-1, commonly assigned as F2g phonon, which shows highly anomalous temperature dependence, is now assigned to a disorder-induced Raman active mode involving Ti4+ vibrations. Moreover, we address here the origin of the new Raman mode, observed below TC similar to 110 K in Dy2Ti2O7, through a simultaneous pressure-dependent and temperature-dependent Raman study. Our study confirms the new mode to be a phonon mode. We find that dTC/dP = + 5.9 K/GPa. Temperature dependence of other phonons has also been studied at various pressures up to similar to 8 GPa. We find that pressure suppresses the anomalous temperature dependence. The role of the inherent vacant sites present in the pyrochlore structure in the anomalous temperature dependence is also discussed. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We carry out a comparative study of the electronic structure of two pyrochlore ruthenate compounds, Tl2Ru2O7 and Hg2Ru2O7, in terms of first principles calculations. Our study reveals the Ru d electrons in Hg2Ru2O7 to be much more delocalized compared to that in Tl2Ru2O7. The subtle change in the Ru-d bandwidths in the two compounds, triggered by the differences in Hg 5d-Ru 4d hybridization compared to that of Tl 5d-Ru 4d, bring in the observed differences in behavior. Our study further shows that the development of long range noncollinear antiferromagnetic structure at low temperature is sufficient to produce the insulating solution in Hg2Ru2O7, in line with the prediction from recent nuclear magnetic resonance study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We address the problem of high-resolution reconstruction in frequency-domain optical-coherence tomography (FDOCT). The traditional method employed uses the inverse discrete Fourier transform, which is limited in resolution due to the Heisenberg uncertainty principle. We propose a reconstruction technique based on zero-crossing (ZC) interval analysis. The motivation for our approach lies in the observation that, for a multilayered specimen, the backscattered signal may be expressed as a sum of sinusoids, and each sinusoid manifests as a peak in the FDOCT reconstruction. The successive ZC intervals of a sinusoid exhibit high consistency, with the intervals being inversely related to the frequency of the sinusoid. The statistics of the ZC intervals are used for detecting the frequencies present in the input signal. The noise robustness of the proposed technique is improved by using a cosine-modulated filter bank for separating the input into different frequency bands, and the ZC analysis is carried out on each band separately. The design of the filter bank requires the design of a prototype, which we accomplish using a Kaiser window approach. We show that the proposed method gives good results on synthesized and experimental data. The resolution is enhanced, and noise robustness is higher compared with the standard Fourier reconstruction. (c) 2012 Optical Society of America

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let G be a Kahler group admitting a short exact sequence 1 -> N -> G -> Q -> 1 where N is finitely generated. (i) Then Q cannot be non-nilpotent solvable. (ii) Suppose in addition that Q satisfies one of the following: (a) Q admits a discrete faithful non-elementary action on H-n for some n >= 2. (b) Q admits a discrete faithful non-elementary minimal action on a simplicial tree with more than two ends. (c) Q admits a (strong-stable) cut R such that the intersection of all conjugates of R is trivial. Then G is virtually a surface group. It follows that if Q is infinite, not virtually cyclic, and is the fundamental group of some closed 3-manifold, then Q contains as a finite index subgroup either a finite index subgroup of the three-dimensional Heisenberg group or the fundamental group of the Cartesian product of a closed oriented surface of positive genus and the circle. As a corollary, we obtain a new proof of a theorem of Dimca and Suciu in Which 3-manifold groups are Kahler groups? J. Eur. Math. Soc. 11 (2009) 521-528] by taking N to be the trivial group. If instead, G is the fundamental group of a compact complex surface, and N is finitely presented, then we show that Q must contain the fundamental group of a Seifert-fibered 3-manifold as a finite index subgroup, and G contains as a finite index subgroup the fundamental group of an elliptic fibration. We also give an example showing that the relation of quasi-isometry does not preserve Kahler groups. This gives a negative answer to a question of Gromov which asks whether Kahler groups can be characterized by their asymptotic geometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We address the question, does a system A being entangled with another system B, put any constraints on the Heisenberg uncertainty relation (or the Schrodinger-Robertson inequality)? We find that the equality of the uncertainty relation cannot be reached for any two noncommuting observables, for finite dimensional Hilbert spaces if the Schmidt rank of the entangled state is maximal. One consequence is that the lower bound of the uncertainty relation can never be attained for any two observables for qubits, if the state is entangled. For infinite-dimensional Hilbert space too, we show that there is a class of physically interesting entangled states for which no two noncommuting observables can attain the minimum uncertainty equality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We address the question, does a system A being entangled with another system B, put any constraints on the Heisenberg uncertainty relation (or the Schrodinger-Robertson inequality)? We find that the equality of the uncertainty relation cannot be reached for any two noncommuting observables, for finite dimensional Hilbert spaces if the Schmidt rank of the entangled state is maximal. One consequence is that the lower bound of the uncertainty relation can never be attained for any two observables for qubits, if the state is entangled. For infinite-dimensional Hilbert space too, we show that there is a class of physically interesting entangled states for which no two noncommuting observables can attain the minimum uncertainty equality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the Schrodinger equation i partial derivative(s)u(z, t; s) - Lu(z, t; s) = 0; where L is the sub-Laplacian on the Heisenberg group. Assume that the initial data f satisfies vertical bar f(z, t)vertical bar less than or similar to q(alpha)(z, t), where q(s) is the heat kernel associated to L. If in addition vertical bar u(z, t; s(0))vertical bar less than or similar to q(beta)(z, t), for some s(0) is an element of R \textbackslash {0}, then we prove that u(z, t; s) = 0 for all s is an element of R whenever alpha beta < s(0)(2). This result holds true in the more general context of H-type groups. We also prove an analogous result for the Grushin operator on Rn+1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental quantum simulation of a Hamiltonian H requires unitary operator decomposition (UOD) of its evolution unitary U = exp(-iHt) in terms of native unitary operators of the experimental system. Here, using a genetic algorithm, we numerically evaluate the most generic UOD (valid over a continuous range of Hamiltonian parameters) of the unitary operator U, termed fidelity-profile optimization. The optimization is obtained by systematically evaluating the functional dependence of experimental unitary operators (such as single-qubit rotations and time-evolution unitaries of the system interactions) to the Hamiltonian (H) parameters. Using this technique, we have solved the experimental unitary decomposition of a controlled-phase gate (for any phase value), the evolution unitary of the Heisenberg XY interaction, and simulation of the Dzyaloshinskii-Moriya (DM) interaction in the presence of the Heisenberg XY interaction. Using these decompositions, we studied the entanglement dynamics of a Bell state in the DM interaction and experimentally verified the entanglement preservation procedure of Hou et al. Ann. Phys. (N.Y.) 327, 292 (2012)] in a nuclear magnetic resonance quantum information processor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report inelastic light scattering studies on Ca(Fe0.97Co0.03)(2)As-2 in a wide spectral range of 120-5200 cm(-1) from 5 to 300 K, covering the tetragonal to orthorhombic structural transition as well as magnetic transition at T-sm similar to 160 K. The mode frequencies of two first-order Raman modes B-1g and E-g, both involving the displacement of Fe atoms, show a sharp increase below T-sm. Concomitantly, the linewidths of all the first-order Raman modes show anomalous broadening below T-sm, attributed to strong spin-phonon coupling. The high frequency modes observed between 400 and 1200 cm(-1) are attributed to electronic Raman scattering involving the crystal field levels of d-orbitals of Fe2+. The splitting between xz and yz d-orbital levels is shown to be similar to 25 meV, which increases as temperature decreases below T-sm. A broad Raman band observed at similar to 3200 cm(-1) is assigned to two-magnon excitation of the itinerant Fe 3d antiferromagnet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single crystals of LaMn0.5Co0.5O3 belonging to the ferromagnetic-insulator and distorted perovskite class were grown using a four-mirror optical float zone furnace. The as-grown crystal crystallizes into an orthorhombic Pbnm structure. The spatially resolved 2D Raman scan reveals a strain-induced distribution of transition metal (TM)-oxygen (O) octahedral deformation in the as-grown crystal. A rigorous annealing process releases the strain, thereby generating homogeneous octahedral distortion. The octahedra tilt by reducing the bond angle TM-O-TM, resulting in a decline of the exchange energy in the annealed crystal. The critical behavior is investigated from the bulk magnetization. It is found that the ground state magnetic behavior assigned to the strain-free LaMn0.5Co0.5O3 crystal is of the 3D Heisenberg kind. Strain induces mean field-like interaction in some sites, and consequently, the critical exponents deviate from the 3D Heisenberg class in the as-grown crystal. The temperature-dependent Raman scattering study reveals strong spin-phonon coupling and the existence of two magnetic ground states in the same crystal. (C) 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The standard approach to signal reconstruction in frequency-domain optical-coherence tomography (FDOCT) is to apply the inverse Fourier transform to the measurements. This technique offers limited resolution (due to Heisenberg's uncertainty principle). We propose a new super-resolution reconstruction method based on a parametric representation. We consider multilayer specimens, wherein each layer has a constant refractive index and show that the backscattered signal from such a specimen fits accurately in to the framework of finite-rate-of-innovation (FRI) signal model and is represented by a finite number of free parameters. We deploy the high-resolution Prony method and show that high-quality, super-resolved reconstruction is possible with fewer measurements (about one-fourth of the number required for the standard Fourier technique). To further improve robustness to noise in practical scenarios, we take advantage of an iterated singular-value decomposition algorithm (Cadzow denoiser). We present results of Monte Carlo analyses, and assess statistical efficiency of the reconstruction techniques by comparing their performance against the Cramer-Rao bound. Reconstruction results on experimental data obtained from technical as well as biological specimens show a distinct improvement in resolution and signal-to-reconstruction noise offered by the proposed method in comparison with the standard approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the phase diagram of the ionic Hubbard model (IHM) at half filling on a Bethe lattice of infinite connectivity using dynamical mean-field theory (DMFT), with two impurity solvers, namely, iterated perturbation theory (IPT) and continuous time quantum Monte Carlo (CTQMC). The physics of the IHM is governed by the competition between the staggered ionic potential Delta and the on-site Hubbard U. We find that for a finite Delta and at zero temperature, long-range antiferromagnetic (AFM) order sets in beyond a threshold U = U-AF via a first-order phase transition. For U smaller than U-AF the system is a correlated band insulator. Both methods show a clear evidence for a quantum transition to a half-metal (HM) phase just after the AFM order is turned on, followed by the formation of an AFM insulator on further increasing U. We show that the results obtained within both methods have good qualitative and quantitative consistency in the intermediate-to-strong-coupling regime at zero temperature as well as at finite temperature. On increasing the temperature, the AFM order is lost via a first-order phase transition at a transition temperature T-AF(U,Delta) or, equivalently, on decreasing U below U-AF(T,Delta)], within both methods, for weak to intermediate values of U/t. In the strongly correlated regime, where the effective low-energy Hamiltonian is the Heisenberg model, IPT is unable to capture the thermal (Neel) transition from the AFM phase to the paramagnetic phase, but the CTQMC does. At a finite temperature T, DMFT + CTQMC shows a second phase transition (not seen within DMFT + IPT) on increasing U beyond U-AF. At U-N > U-AF, when the Neel temperature T-N for the effective Heisenberg model becomes lower than T, the AFM order is lost via a second-order transition. For U >> Delta, T-N similar to t(2)/U(1 - x(2)), where x = 2 Delta/U and thus T-N increases with increase in Delta/U. In the three-dimensional parameter space of (U/t, T/t, and Delta/t), as T increases, the surface of first-order transition at U-AF(T,Delta) and that of the second-order transition at U-N(T,Delta) approach each other, shrinking the range over which the AFM order is stable. There is a line of tricritical points that separates the surfaces of first- and second-order phase transitions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the origin of room temperature weak ferromagnetic behavior of polycrystalline Pb(Fe2/3W1/3)O-3 (PFW) powder. The structure and magnetic properties of the ceramic powder prepared by a Columbite method were characterized by X-ray and neutron diffraction, Mossbauer spectroscopy and magnetization measurements. Rietveld analysis of diffraction data confirm the formation of single phase PFW, without traces of any parasitic pyrochlore phase. PFW was found to crystallize in the cubic structure at room temperature. The Rietveld refinement of neutron diffraction data measured at room temperature confirmed the G-type antiferromagnetic structure of PFW in our sample. However, along with the antiferromagnetic (AFM) ordering of the Fe spins, we have observed the existence of weak ferromagnetism at room temperature through: (i) a clear opening of hysteresis (M-H) loop, (ii) bifurcation of the field cooled and zero-field cooled susceptibility; supported by Mossbauer spectroscopy results. The P-E loop measurements showed a non-linear slim hysteresis loop at room temperature due to the electronic conduction through the local inhomogeneities in the PFW crystallites and the inter-particle regions. By corroborating all the magnetic measurements, especially the spin glass nature of the sample, with the conduction behavior of the sample, we report here that the observed ferromagnetism originates at these local inhomogeneous regions in the sample, where the Fe-spins are not perfectly aligned antiferromagnetically due to the compositional disordering. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An efficient density matrix renormalization group (DMRG) algorithm is presented and applied to Y junctions, systems with three arms of n sites that meet at a central site. The accuracy is comparable to DMRG of chains. As in chains, new sites are always bonded to the most recently added sites and the superblock Hamiltonian contains only new or once renormalized operators. Junctions of up to N = 3n + 1 approximate to 500 sites are studied with antiferromagnetic (AF) Heisenberg exchange J between nearest-neighbor spins S or electron transfer t between nearest neighbors in half-filled Hubbard models. Exchange or electron transfer is exclusively between sites in two sublattices with N-A not equal N-B. The ground state (GS) and spin densities rho(r) = < S-r(z)> at site r are quite different for junctions with S = 1/2, 1, 3/2, and 2. The GS has finite total spin S-G = 2S(S) for even (odd) N and for M-G = S-G in the S-G spin manifold, rho(r) > 0(< 0) at sites of the larger (smaller) sublattice. S = 1/2 junctions have delocalized states and decreasing spin densities with increasing N. S = 1 junctions have four localized S-z = 1/2 states at the end of each arm and centered on the junction, consistent with localized states in S = 1 chains with finite Haldane gap. The GS of S = 3/2 or 2 junctions of up to 500 spins is a spin density wave with increased amplitude at the ends of arms or near the junction. Quantum fluctuations completely suppress AF order in S = 1/2 or 1 junctions, as well as in half-filled Hubbard junctions, but reduce rather than suppress AF order in S = 3/2 or 2 junctions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the case of metallic ferromagnets there has always been a controversy, i.e. whether the magnetic interaction is itinerant or localized. For example SrRuO3 is known to be an itinerant ferromagnet where the spin-spin interaction is expected to be mean field in nature. However, it is reported to behave like Ising, Heisenberg or mean field by different groups. Despite several theoretical and experimental studies and the importance of strongly correlated systems, the experimental conclusion regarding the type of spin-spin interaction in SrRuO3 is lacking. To resolve this issue, we have investigated the critical behaviour in the vicinity of the paramagnetic-ferromagnetic phase transition using various techniques on polycrystalline as well as (001) oriented SrRuO3 films. Our analysis reveals that the application of a scaling law in the field-cooled magnetization data extracts the value of the critical exponent only when it is measured at H -> 0. To substantiate the actual nature without any ambiguity, the critical behavior is studied across the phase transition using the modified Arrott plot, Kouvel-Fisher plot and M-H isotherms. The critical analysis yields self-consistent beta, gamma and delta values and the spin interaction follows the long-range mean field model. Further the directional dependence of the critical exponent is studied in thin films and it reveals the isotropic nature. It is elucidated that the different experimental protocols followed by different groups are the reason for the ambiguity in determining the critical exponents in SrRuO3.