697 resultados para H( )-ATPase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have recently implicated heat shock protein 90 from Plasmodium falciparum (PfHsp90) as a potential drug target against malaria. Using inhibitors specific to the nucleotide binding domain of Hsp90, we have shown potent growth inhibitory effects on development of malarial parasite in human erythrocytes. To gain better understanding of the vital role played by PfHsp90 in parasite growth, we have modeled its three dimensional structure using recently described full length structure of yeast Hsp90. Sequence similarity found between PfHsp90 and yeast Hsp90 allowed us to model the core structure with high confidence. The superimposition of the predicted structure with that of the template yeast Hsp90 structure reveals an RMSD of 3.31 angstrom. The N-terminal and middle domains showed the least RMSD (1.76 angstrom) while the more divergent C-terminus showed a greater RMSD (2.84 angstrom) with respect to the template. The structure shows overall conservation of domains involved in nucleotide binding, ATPase activity, co-chaperone binding as well as inter-subunit interactions. Important co-chaperones known to modulate Hsp90 function in other eukaryotes are conserved in malarial parasite as well. An acidic stretch of amino acids found in the linker region, which is uniquely extended in PfHsp90 could not be modeled in this structure suggesting a flexible conformation. Our results provide a basis to compare the overall structure and functional pathways dependent on PfHsp90 in malarial parasite. Further analysis of differences found between human and parasite Hsp90 may make it possible to design inhibitors targeted specifically against malaria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Groundnut bud necrosis virus (GBNV), a member of genus Tospovirus in the family Bunyaviridae, infects a large number of leguminosae and solanaceae plants in India. With a view to elucidate the function of nonstructural protein, NSs encoded by the small RNA genome (S RNA), the NSs protein of GBNV-tomato (Karnataka) [1] was over-expressed in E.coli and purified by Ni-NTA chromatography. The purified rNSs protein exhibited an RNA stimulated NTPase activity. Further, this activity was metal ion dependent and was inhibited by adenosine 5' (beta, gamma imido) triphosphate, an ATP analog. The rNSs could also hydrolyze dATP.Interestingly, in addition to the NTPase and dATPase activities, the rNSs exhibited ATP independent 5' RNA/DNA phosphatase activity that was completely inhibited by AMP. The 5' alpha phosphate could be removed from ssDNA, ssRNA, dsDNA and dsRNA thus confirming that rNSs has a novel 5' alpha phosphatase activity. K189A mutation in the Walker motif A (GxxxxGKT) resulted in complete loss of ATPase activity, but the 5'phosphatase activity was unaffected. On the other hand, D159A mutation in the Walker motif B (DExx) resulted in partial loss of both the activities. These results demonstrate for the first time that NSs is a bifunctional enzyme, which could participate in viral movement, replication or in suppression of the host defense mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA helicases are present in all kingdoms of life and play crucial roles in processes of DNA metabolism such as replication, repair, recombination, and transcription. To date, however, the role of DNA helicases during homologous recombination in mycobacteria remains unknown. In this study, we show that Mycobacterium tuberculosis UvrD1 more efficiently inhibited the strand exchange promoted by its cognate RecA, compared to noncognate Mycobacterium smegmatis or Escherichia coli RecA proteins. The M. tuberculosis UvrD1(Q276R) mutant lacking the helicase and ATPase activities was able to block strand exchange promoted by mycobacterial RecA proteins but not of E. coil RecA. We observed that M. tuberculosis UvrA by itself has no discernible effect on strand exchange promoted by E. coli RecA but impedes the reaction catalyzed by the mycobacterial RecA proteins. Our data also show that M. tuberculosis UvrA and UvrD1 can act together to inhibit strand exchange promoted by mycobacterial RecA proteins. Taken together, these findings raise the possibility that UvrD1 and UvrA might act together in vivo to counter the deleterious effects of RecA nucleoprotein filaments and/or facilitate the dissolution of recombination intermediates. Finally, we provide direct experimental evidence for a physical interaction between M. tuberculosis UvrD1 and RecA on one hand and RecA and UvrA on the other hand. These observations are consistent with a molecular mechanism, whereby M. tuberculosis UvrA and UvrD1, acting together, block DNA strand exchange promoted by cognate and noncognate RecA proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA helicases are present in all kingdoms of life and play crucial roles in processes of DNA metabolism such as replication, repair, recombination, and transcription. To date, however, the role of DNA helicases during homologous recombination in mycobacteria remains unknown. In this study, we show that Mycobacterium tuberculosis UvrD1 more efficiently inhibited the strand exchange promoted by its cognate RecA, compared to noncognate Mycobacterium smegmatis or Escherichia coli RecA proteins. The M. tuberculosis UvrD1(Q276R) mutant lacking the helicase and ATPase activities was able to block strand exchange promoted by mycobacterial RecA proteins but not of E. coil RecA. We observed that M. tuberculosis UvrA by itself has no discernible effect on strand exchange promoted by E. coli RecA but impedes the reaction catalyzed by the mycobacterial RecA proteins. Our data also show that M. tuberculosis UvrA and UvrD1 can act together to inhibit strand exchange promoted by mycobacterial RecA proteins. Taken together, these findings raise the possibility that UvrD1 and UvrA might act together in vivo to counter the deleterious effects of RecA nucleoprotein filaments and/or facilitate the dissolution of recombination intermediates. Finally, we provide direct experimental evidence for a physical interaction between M. tuberculosis UvrD1 and RecA on one hand and RecA and UvrA on the other hand. These observations are consistent with a molecular mechanism, whereby M. tuberculosis UvrA and UvrD1, acting together, block DNA strand exchange promoted by cognate and noncognate RecA proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liver mitochondria isolated from vanadate-administered rats showed increased (20-25%) rates of oxidation of both NAD(+)-linked substrates and succinate. Respiratory control index and ADP/O were unaffected by the treatment. Dormant and uncoupler-stimulated ATPase activity also was not affected by vanadate administration. Membrane-bound, electron-transport-linked dehydrogenase activities (both NAD(+)- and succinate-dependent) increased by 15-20% on vanadate treatment. Mitochondrial alpha-glycerophosphate dehydrogenase activity increased by 50% on vanadate administration. The above effects of vanadate on oxidoreductase activities could be prevented by the prior administration of antagonists to alpha-adrenergic receptors. Substrate-dependent H2O2 generation by mitochondria also showed an increase on vanadate administration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a pharmacological inhibitor of Hsp90 in cultured malarial parasite, we have previously implicated Plasmodium falciparum Hsp90 (PfHsp90) as a drug target against malaria. In this study, we have biochemically characterized PfHsp90 in terms of its ATPase activity and interaction with its inhibitor geldanamycin (GA) and evaluated its potential as a drug target in a preclinical mouse model of malaria. In addition, we have explored the potential of Hsp90 inhibitors as drugs for the treatment of Trypanosoma infection in animals. Our studies with full-length PfHsp90 showed it to have the highest ATPase activity of all known Hsp90s; its ATPase activity was 6 times higher than that of human Hsp90. Also, GA brought about more robust inhibition of PfHsp90 ATPase activity as compared with human Hsp90. Mass spectrometric analysis of PfHsp90 expressed in P. falciparum identified a site of acetylation that overlapped with Aha1 and p23 binding domain, suggesting its role in modulating Hsp90 multichaperone complex assembly. Indeed, treatment of P. falciparum cultures with a histone deacetylase inhibitor resulted in a partial dissociation of PfHsp90 complex. Furthermore, we found a well known, semisynthetic Hsp90 inhibitor, namely 17-(allylamino)-17-demethoxygeldanamycin, to be effective in attenuating parasite growth and prolonging survival in a mouse model of malaria. We also characterized GA binding to Hsp90 from another protozoan parasite, namely Trypanosoma evansi. We found 17-(allylamino)-17-demethoxygeldanamycin to potently inhibit T. evansi growth in a mouse model of trypanosomiasis. In all, our biochemical characterization, drug interaction, and animal studies supported Hsp90 as a drug target and its inhibitor as a potential drug against protozoan diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methyl isocyanate (MIC) interaction with the rabbit erythrocyte membrane increased the fluidity of the membrane and decreased the osmotic fragility of erythrocytes both in vitro and in vivo in rabbits intoxicated with MIC subcutaneously. MIC inhibited both acetylcholinesterase (AChE) and adenosine triphosphatase (ATPase) activities of erythrocytes dose-dependently in vitro, while in vivo a decreased trend in ATPase activity with unaltered AChE activity was observed. MIC also caused significant decrease in plasma sodium level with corresponding increase in potassium level in rabbits. The observed effects are due to MIC, per se, as the hydrolysis products of MIC, methylamine and N,Nprime-dimethylurea did not affect the erythrocyte fluidity and enzymes activities both in vitro and in vivo while they increased the osmotic fragility of erythrocytes in vivo in rabbits administered subcutaneously in equimolar concentration to MIC dosage. Inhibition of Na+-K+-dependent ATPase with altered permeability to cations and also probably water transport of plasma membrane due to MIC interaction are envisaged.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unilateral ischemia in the right cerebral hemisphere of the rat was induced by ligation of the right common carotid artery coupled with controlled hemorrhage to produce hypotension (25±8 mm/Hg). Where indicated after 30 min of ischemia, the withdrawn blood was reinfused to restore arterial pressure to normal. Mitochondria isolated from the ipsilateral hemisphere after 30 min of ischemia showed significantly lower respiratory rates than the organelles isolated from the contralateral side. Oxidation of NAD+-linked substrates was more sensitive to inhibition in ischemia (30%) than was of ferrocytochromec (12%), succinate oxidation being intermediate. The activities of membrane-bound dehydrogenases (both NADH and succinate-linked) were also significantly lowered. Ischemia did not affect the cytochrome content of mitochondria. Respiratory activity (NAD+-linked) of mitochondria isolated from the ipsilateral hemisphere was twice as sensitive to inhibition by fatty acid as was of preparations from the contralateral side. Mitochondria isolated from cerebral cortex after 90 min of post-ischemic reperfusion showed no significant improvement in the rate of substrate oxidation. Adenine nucleotide translocase activity and energy-dependent Ca2+ uptake, both of which decreased significantly in mitochondria isolated from the ischemic brain, showed little recovery, on reperfusion. These observations suggested the strong possibility that the deleterious effects of ischemia on mitochondrial respiratory function might be mediated by free fatty acids that are known to accumulate in large amounts in ischemic tissues. The pattern of inhibition of ATPase activity was consistent with this view.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nucleoside di- and triphosphates and adenosine regulate several components of the mucocilairy clearance process (MCC) that protects the lung against infections, via activation of epithelial purinergic receptors. However, assessing the contribution of individual nucleotides to MCC functions remains difficult due to the complexity of the mechanisms of nucleotide release and metabolism. Enzymatic activities involved in the metabolism of extracellular nucleotides include ecto-ATPases and secreted nucleoside diphosphokinase (NDPK) and adenyl kinase, but potent and selective inhibitors of these activities are sparse. In the present study, we discovered that ebselen markedly reduced NDPK activity while having negligible effect on ecto-ATPase and adenyl kinase activities. Addition of radiotracer gamma P-32]ATP to human bronchial epithelial (HBE) cells resulted in rapid and robust accumulation of P-32]-inorganic phosphate ((32)Pi). Inclusion of UDP in the incubation medium resulted in conversion of gamma P-32]ATP to P-32]UTP, while inclusion of AMP resulted in conversion of gamma P-32]ATP to P-32]ADP. Ebselen markedly reduced P-32]UTP formation but displayed negligible effect on (32)Pi or P-32]ADP accumulations. Incubation of HBE cells with unlabeled UTP and ADP resulted in robust ebselen-sensitive formation of ATP (IC50=6.9 +/- 2 mu M). This NDPK activity was largely recovered in HBE cell secretions and supernatants from lung epithelial A549 cells. Kinetic analysis of NDPK activity indicated that ebselen reduced the V-max of the reaction (K-i=7.6 +/- 3 mu M), having negligible effect on KM values. Our study demonstrates that ebselen is a potent noncompetitive inhibitor of extracellular NDPK.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The type III restriction endonuclease EcoPI, coded by bacteriophage Fl, cleaves unmodified DNA in the presence of ATP and magnesium ions. We show that purified EcoPI restriction enzyme fails to cleave DNA in the presence of non-hydrolyzable ATP analogs. More importantly, this study demonstrates that EcoPI restriction enzyme has an inherent ATPase activity, and ATP hydrolysis is necessary for DNA cleavage. Furthermore, we show that the progress curve of the reaction with Eco PI restriction enzyme exhibits a lag which is dependent on the enzyme concentration. Kinetic analysis of the progress curves of the reaction suggest slow transitions that can occur during the reaction, characteristic of hysteretic enzymes. The role of ATP in the cleavage mechanism of type III restriction enzymes is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous work has shown that irrespective of the route of exposure methyl isocyanate (MIC) caused acute lactic acidosis in rats (Jeevaratnam et al., Arch. Environ. Contam. Toxicol. 19, 314�319, 1990) and the hypoxia was of stagnant type due to tissue hypoperfusion resulting from hypovolemic hypotension in rabbits administered MIC subcutaneously (Jeevarathinam et al., Toxicology 51, 223�240, 1988). The present study was designed to investigate whether MIC could induce histotoxic hypoxia through its effects on mitochondrial respiration. Male Wistar rats were used for liver mitochondrial and submitochondrial particle (SMP) preparation. Addition of MIC to tightly coupled mitochondria in vitro resulted in stimulation of state 4 respiration, abolition of respiratory control, decrease in ADP/O ratio, and inhibition of state 3 oxidation. The oxidation of NAD+-linked substrates (glutamate + malate) was more sensitive (fiveto sixfold) to the inhibitory action of MIC than succinate while cytochrome oxidase remained unaffected. MIC induced twofold delay in the onset of anerobiosis, and cytochrome b reduction in SMP with NADH in vitro confirms inhibition of electron transport at complex I region. MIC also stimulated the ATPase activity in tightly coupled mitochondria while lipid peroxidation remained unaffected. As its hydrolysis products, methylamine and N,N?-dimethylurea failed to elicit any change in vitro; these effects reveal that MIC per se acts as an inhibitor of electron transport and a weak uncoupler. Administration of MIC sc at lethal dose caused a similar change only with NAD+-linked substrates, reflecting impairment of mitochondrial respiration at complex I region and thereby induction of histotoxic hypoxia in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integral membrane proteins have one or more transmembrane a-helical domains and carry out a variety of functions such as enzyme catalysis, transport across membranes, transducing signals as receptors of hormones and growth factors, and energy transfer in ATP synthesis. These transmembrane domains are not mere structural units anchoring the protein to the lipid bilayer but seem to-contribute in the overall activity. Recent findings in support of this are described using some typical examples-LDL receptor, growth factor receptor tyrosine kinase, HMG-CoA reductase, F-0-ATPase and adrenergic receptors. The trends in research indicate that these transmembrane domains participate in a variety of ways such as a linker, a transducer or an exchanger in the overall functions of these proteins in transfer of materials, energy and signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An attempt is made to draw a profile of adenosine triphosphate (ATP) and to project its many actions. The amazing versatility of its participation in a number of synthetic reactions lies in the oligophosphate structure. Many proteins that use ATP have conserved binding 'P-loop' but this gives no clue what makes it so special. The energy transducing reactions leading to synthesis of the terminal phosphodiester had at least three strategies. Of these, direct dehydration and transfer of inorganic phosphate using respiratory energy operate through mechano-coupling in a multisubunit protein. This tripartite, knob-stalk-base structure provides a novel mechanism of rotational catalysis and the tiniest molecular motor, All the reactions occur in concert with no sign of energized chemical intermediate. With the new knowledge on the crystal structure of F-1-ATPase, proton translocation needs a relook. An alternative perspective is emerging on energy being received and stored in polypeptide structure by breaking hydrogen bonds. Membrane serves the purpose of mobilizing the constituent proteins and also as a potential energy carrier of proteins with little loss of energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Res subunits of the type III restriction-modification enzymes share a statistically significant amino acid sequence similarity with several RNA and DNA helicases of the so-called DEAD family. It was postulated that in type III restriction enzymes a DNA helicase activity may be required for local unwinding at the cleavage site. The members of this family share seven conserved motifs, all of which are found in the Res subunit of the type III restriction enzymes. To determine the contribution, if any, of these motifs in DNA cleavage by EcoPI, a type III restriction enzyme, we have made changes in motifs I and II. While mutations in motif I (GTGKT) clearly affected ATP hydrolysis and resulted in loss of DNA cleavage activity, mutation in motif II (DEPH) significantly decreased ATP hydrolysis but had no effect on DNA cleavage. The double mutant R.EcoPIK90R-H229K showed no significant ATPase or DNA restriction activity though ATP binding was not affected. These results imply that there are at least two ATPase reaction centres in EcoPI restriction enzyme. Motif I appears to be involved in coupling DNA restriction to ATP hydrolysis. Our results indicate that EcoPI restriction enzyme does not have a strand separation activity. We suggest that these motifs play a role in the ATP-dependent translocation that has been proposed to occur in the type III restriction enzymes. (C) 1997 Academic Press Limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidative damage, through increased production of free radicals, is believed to be involved in UV-induced cataractogenesis (eye lens opacification). The possibility of UVB radiation causing damage to important lenticular enzymes was assessed by irradiating 3 months old rat lenses (in RPMI-1640 medium) at 300 nm (100 mu Wcm(-2)) for 24 h, in the absence and presence of ascorbic acid, alpha-tocopherol acetate and beta-carotene. UVB irradiation resulted in decreased activities of hexokinase, glucose-6-phosphate dehydrogenase, aldose reductase, and Na, K- ATPase by 42, 40, 44 and 57% respectively. While endopeptidase activity (229%) and lipid peroxidation (156%) were increased, isocitrate dehydrogenase activity was not altered on irradiation. In the presence of externally added ascorbic acid, tocopherol and beta-carotene (separately) to the medium, the changes in enzyme activities (except endopeptidase) and increased lipid peroxidation, due to UVB exposure, were prevented. These results suggest that UVB radiation exerts oxidative damage on lens enzymes and antioxidants were protective against this damage.