920 resultados para Guided missiles.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a model for recovering the direction of heading of an observer who is moving relative to a scene that may contain self-moving objects. The model builds upon an algorithm proposed by Rieger and Lawton (1985), which is based on earlier work by Longuet-Higgens and Prazdny (1981). The algorithm uses velocity differences computed in regions of high depth variation to estimate the location of the focus of expansion, which indicates the observer's heading direction. We relate the behavior of the proposed model to psychophysical observations regarding the ability of human observers to judge their heading direction, and show how the model can cope with self-moving objects in the environment. We also discuss this model in the broader context of a navigational system that performs tasks requiring rapid sensing and response through the interaction of simple task-specific routines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a new approach to building a design for testability (DFT) system. The system takes a digital circuit description, finds out the problems in testing it, and suggests circuit modifications to correct those problems. The key contributions of the thesis research are (1) setting design for testability in the context of test generation (TG), (2) using failures during FG to focus on testability problems, and (3) relating circuit modifications directly to the failures. A natural functionality set is used to represent the maximum functionalities that a component can have. The current implementation has only primitive domain knowledge and needs other work as well. However, armed with the knowledge of TG, it has already demonstrated its ability and produced some interesting results on a simple microprocessor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mechanism is proposed that integrates low-level (image processing), mid-level (recursive 3D trajectory estimation), and high-level (action recognition) processes. It is assumed that the system observes multiple moving objects via a single, uncalibrated video camera. A novel extended Kalman filter formulation is used in estimating the relative 3D motion trajectories up to a scale factor. The recursive estimation process provides a prediction and error measure that is exploited in higher-level stages of action recognition. Conversely, higher-level mechanisms provide feedback that allows the system to reliably segment and maintain the tracking of moving objects before, during, and after occlusion. The 3D trajectory, occlusion, and segmentation information are utilized in extracting stabilized views of the moving object. Trajectory-guided recognition (TGR) is proposed as a new and efficient method for adaptive classification of action. The TGR approach is demonstrated using "motion history images" that are then recognized via a mixture of Gaussian classifier. The system was tested in recognizing various dynamic human outdoor activities; e.g., running, walking, roller blading, and cycling. Experiments with synthetic data sets are used to evaluate stability of the trajectory estimator with respect to noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combined 2D, 3D approach is presented that allows for robust tracking of moving people and recognition of actions. It is assumed that the system observes multiple moving objects via a single, uncalibrated video camera. Low-level features are often insufficient for detection, segmentation, and tracking of non-rigid moving objects. Therefore, an improved mechanism is proposed that integrates low-level (image processing), mid-level (recursive 3D trajectory estimation), and high-level (action recognition) processes. A novel extended Kalman filter formulation is used in estimating the relative 3D motion trajectories up to a scale factor. The recursive estimation process provides a prediction and error measure that is exploited in higher-level stages of action recognition. Conversely, higher-level mechanisms provide feedback that allows the system to reliably segment and maintain the tracking of moving objects before, during, and after occlusion. The 3D trajectory, occlusion, and segmentation information are utilized in extracting stabilized views of the moving object that are then used as input to action recognition modules. Trajectory-guided recognition (TGR) is proposed as a new and efficient method for adaptive classification of action. The TGR approach is demonstrated using "motion history images" that are then recognized via a mixture-of-Gaussians classifier. The system was tested in recognizing various dynamic human outdoor activities: running, walking, roller blading, and cycling. Experiments with real and synthetic data sets are used to evaluate stability of the trajectory estimator with respect to noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An improved method for deformable shape-based image segmentation is described. Image regions are merged together and/or split apart, based on their agreement with an a priori distribution on the global deformation parameters for a shape template. The quality of a candidate region merging is evaluated by a cost measure that includes: homogeneity of image properties within the combined region, degree of overlap with a deformed shape model, and a deformation likelihood term. Perceptually-motivated criteria are used to determine where/how to split regions, based on the local shape properties of the region group's bounding contour. A globally consistent interpretation is determined in part by the minimum description length principle. Experiments show that the model-based splitting strategy yields a significant improvement in segmention over a method that uses merging alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A neural model is developed to explain how humans can approach a goal object on foot while steering around obstacles to avoid collisions in a cluttered environment. The model uses optic flow from a 3D virtual reality environment to determine the position of objects based on motion discotinuities, and computes heading direction, or the direction of self-motion, from global optic flow. The cortical representation of heading interacts with the representations of a goal and obstacles such that the goal acts as an attractor of heading, while obstacles act as repellers. In addition the model maintains fixation on the goal object by generating smooth pursuit eye movements. Eye rotations can distort the optic flow field, complicating heading perception, and the model uses extraretinal signals to correct for this distortion and accurately represent heading. The model explains how motion processing mechanisms in cortical areas MT, MST, and VIP can be used to guide steering. The model quantitatively simulates human psychophysical data about visually-guided steering, obstacle avoidance, and route selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A neural model is developed to explain how humans can approach a goal object on foot while steering around obstacles to avoid collisions in a cluttered environment. The model uses optic flow from a 3D virtual reality environment to determine the position of objects based on motion discontinuities, and computes heading direction, or the direction of self-motion, from global optic flow. The cortical representation of heading interacts with the representations of a goal and obstacles such that the goal acts as an attractor of heading, while obstacles act as repellers. In addition the model maintains fixation on the goal object by generating smooth pursuit eye movements. Eye rotations can distort the optic flow field, complicating heading perception, and the model uses extraretinal signals to correct for this distortion and accurately represent heading. The model explains how motion processing mechanisms in cortical areas MT, MST, and posterior parietal cortex can be used to guide steering. The model quantitatively simulates human psychophysical data about visually-guided steering, obstacle avoidance, and route selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We addressed four research questions, each relating to the training and assessment of the competencies associated with the performance of ultrasound-guided axillary brachial plexus blockade (USgABPB). These were: (i) What are the most important determinants of learning of USgABPB? (ii) What is USgABPB? What are the errors most likely to occur when trainees learn to perform this procedure? (iii) How should end-user input be applied to the development of a novel USgABPB simulator? (iv) Does structured simulation based training influence novice learning of the procedure positively? We demonstrated that the most important determinants of learning USgABPB are: (a) Access to a formal structured training programme. (b) Frequent exposure to clinical learning opportunity in an appropriate setting (c) A clinical learning opporunity requires an appropriate patient, trainee and teacher being present at the same time, in an appropriate environment. We carried out a comprehensive description of the procedure. We performed a formal task analysis of USgABPB, identifying (i) 256 specific tasks associated with the safe and effective performance of the procedure, and (ii) the 20 most critical errors likely to occur in this setting. We described a methodology for this and collected data based on detailed, sequential evaluation of prototypes by trainees in anaesthesia. We carried out a pilot randomised control trial assessing the effectiveness of a USgABPB simulator during its development. Our data did not enable us to draw a reliable conclusion to this question; the trail did provide important new learning (as a pilot) to inform future investigation of this question. We believe that the ultimate goal of designing effective simulation-based training and assessment of ultrasound-guided regional anaesthesia is closer to realisation as a result of this work. It remains to be proven if this approach will have a positive impact on procedural performance, and more importantly improve patient outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2014, The International Biometric Society.A potential venue to improve healthcare efficiency is to effectively tailor individualized treatment strategies by incorporating patient level predictor information such as environmental exposure, biological, and genetic marker measurements. Many useful statistical methods for deriving individualized treatment rules (ITR) have become available in recent years. Prior to adopting any ITR in clinical practice, it is crucial to evaluate its value in improving patient outcomes. Existing methods for quantifying such values mainly consider either a single marker or semi-parametric methods that are subject to bias under model misspecification. In this article, we consider a general setting with multiple markers and propose a two-step robust method to derive ITRs and evaluate their values. We also propose procedures for comparing different ITRs, which can be used to quantify the incremental value of new markers in improving treatment selection. While working models are used in step I to approximate optimal ITRs, we add a layer of calibration to guard against model misspecification and further assess the value of the ITR non-parametrically, which ensures the validity of the inference. To account for the sampling variability of the estimated rules and their corresponding values, we propose a resampling procedure to provide valid confidence intervals for the value functions as well as for the incremental value of new markers for treatment selection. Our proposals are examined through extensive simulation studies and illustrated with the data from a clinical trial that studies the effects of two drug combinations on HIV-1 infected patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dispersion relations are obtained for the propagation of symmetric and antisymmetric modes in a free transversely isotropic plate. Dispersion curves are plotted for the first four symmetric modes for a magnesium plate immersed in water. The first mode is highly damped and switches over to the second mode when the normalized frequency exceeds 12.