986 resultados para Guided Tissue Regeneration
Resumo:
This article addresses diagnostic parameters that should be assessed in the treatment of extraction sockets with dental implant placement by presenting three case reports that emphasize the relevance of the amount of remaining bone walls. Diagnosis was based on the analysis of clinical and radiographic parameters (e.g.: bone defect morphology, remaining bone volume, presence of infections on the receptor site). Case 1 presents a 5-wall defect in the maxillary right central incisor region with severe root resorption, which was treated with immediate implant placement. Cases 2 and 3 present, respectively, two- and three-wall bone defects that did not have indication for immediate implants. These cases were first submitted to a guided bone regeneration (GBR) procedure with bone graft biomaterial and membrane barriers, and the implants were installed in a second surgical procedure. The analysis of the preoperative periodontal condition of the adjacent teeth and bone defect morphology is extremely important because these factors determine the choice between immediate implant or GBR treatment followed by implant installation in a subsequent intervention.
Resumo:
The purpose of this study was to determine if performing isometric 3-point kneeling exercises on a Swiss ball influenced the isometric force output and EMG activities of the shoulder muscles when compared with performing the same exercises on a stable base of support. Twenty healthy adults performed the isometric 3-point kneeling exercises with the hand placed either on a stable surface or on a Swiss ball. Surface EMG was recorded from the posterior deltoid, pectoralis major, biceps brachii, triceps brachii, upper trapezius, and serratus anterior muscles using surface differential electrodes. All EMG data were reported as percentages of the average root mean square (RMS) values obtained in maximum voluntary contractions for each muscle studied. The highest load value was obtained during exercise on a stable surface. A significant increase was observed in the activation of glenohumeral muscles during exercises on a Swiss ball. However, there were no differences in EMG activities of the scapulothoracic muscles. These results suggest that exercises performed on unstable surfaces may provide muscular activity levels similar to those performed on stable surfaces, without the need to apply greater external loads to the musculoskeletal system. Therefore, exercises on unstable surfaces may be useful during the process of tissue regeneration.
Resumo:
During fetal development, mesenchymal progenitor (MP) cells are co-localized in major hematopoietic territories, such as yolk sac (YS), bone marrow (BM), liver (LV), and others. Studies using mouse and human MP cells isolated from fetus have shown that these cells are very similar but not identical to adult mesenchymal stem cells (MSC). Their differentiation potential is usually restricted to production of highly committed osteogenic and chondrogenic precursors. Such properties of fetal MP cells can be very useful for tissue regeneration, when a great number of committed precursors are required. The objectives of this study were to isolate and characterize MP cells from canine YS, BM, and LV in early and late stages of fetal development. Gestational stage was identified, and cell culture conditions were evaluated for efficient isolation of canine MP cells. All canine fetal MP cells expressed vimentin, nestin, and CD44 proteins. Cytokeratin 18 expression was observed in BM-and LV-MP cells, and vascular endothelial (VE)-cadherin expression was observed only in YS-MP cells. A small number of MP cells (5%) from LV and YS expressed Oct3/4 protein. The differentiation potential of canine fetal MP cells varied significantly: YS- and BM-MP cells differentiated into bone and cartilage, whereas LV-MP cells differentiation was limited to osteogenic fate. None of the canine fetal MP cells were able to differentiate into adipose cells. Our data suggest that canine fetal MP cells are an appropriate in vitro model to study MP biology from hematopoietic territories and they are a source of committed osteogenic and chondrogenic precursors for regenerative medicine.
Resumo:
Carbon dioxide (CO(2)) has been used in the food industry as an antimicrobial agent. This study aimed to investigate whether CO(2) pneumoperitoneum might act similarly as an antimicrobial agent in the infected peritoneal cavity. Peritonitis was induced in 58 rats by intraabdominal injection of an Escherichia coli inoculum (6 x 105 colony-forming units [CFU]/ml). Control rats were injected with saline solution. The rats were randomly divided into four groups: rat control (RC, n = 15), bacterial inoculation control (BIC, n = 10), bacterial inoculation and laparotomy (BIL, n = 17), and bacterial inoculation and CO(2) pneumoperitoneum (BIP, n = 16). The survival rates and histopathologic changes in the abdominal wall muscles, spleen, liver, intestines, and omentum were evaluated, and the samples were classified as ""preserved"" or ""inflamed"" (acute inflammation or tissue regeneration). The survival rates for the four groups were as follows: RC (100%), BIP (75%), BIL (53%), and BIC (30%). With regard to survival rates, statistically significant differences were observed between the following groups: RC and BIC (p = 0.0009), RC and BIL (p = 0.0045), BIP and BIC (p = 0.0332), and RC and BIP (p = 0.0470). No significant differences regarding survival rates were observed between the BIL and BIC groups or between the BIP and BIL groups. With regard to the number of inflamed samples per group, a statistically significant difference was observed between the BIC and RC groups and the BIL and RC groups (p = 0.05). Carbon dioxide pneumoperitoneum has a protective effect against bacterial peritonitis induced in rats.
Resumo:
The aim of this study was to evaluate the effect of the pulsed ultrasound therapy (PUT) in stimulating myoregeneration and collagen deposition in an experimental model of lacerative gastrocnemius muscle lesion in 30 Wistar rats. Fifteen rats were treated (TG) daily with 1 MHz pulsed ultrasound (50%) at 0.57 W/cm(2) for 5 min, and 15 were control animals (CG). Muscle samples were analyzed on postoperative days 4, 7 and 14 through H&E, Picrosirius-polarization and immunohistochemistry for desmin. The lesions presented similar inflammatory responses in both treated and control groups. The areal fraction of fibrillar collagen was larger in the TG at 4 days post-operatively (17.53 +/- 6.2% vs 6.79 +/- 1.3%, p = 0.0491), 7 days (31.07 +/- 7.45% vs 12.57 +/- 3.6%, p = 0.0021) and 14 days (30.39 +/- 7.3% vs 19.13 +/- 3.51%, p = 0.0118); the areal fraction of myoblasts and myotubes was larger in the TG at 14 days after surgery (41.66 +/- 2.97% vs 34.83 +/- 3.08%, p = 0.025). Our data suggest that the PUT increases the differentiation of muscular lineage cells, what would favor tissue regeneration. On the other hand, it is also suggested that there is a larger deposition of collagenous fibers, what could mean worse functional performance. However, the percentage of fibers seems to have stabilized at day 7 in TG and kept increasing in CG. Furthermore, the collagen supramolecular organization achieved by the TG is also significant according to the Sirius red staining results. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The African catfish Clarias gariepinus was used as a model for wound healing and tissue regeneration in a scale-less fish. A temporal framework of histological and cell proliferation markers was established after wound induction in the dorsolateral cranial region, by removing the epidermal and dermal layers, including stratum adiposum (SA). Wound closure and epidermis formation was initiated within 3 h post-procedure (hpp) with migration and concomitant proliferation of epidermal cells from the wound borders. The wound was covered by this primary epidermal front 12 hpp and fusion of the opposing epidermal fronts occurred within 24 hpp. Attachment of the newly formed epidermal layer to the underlying dermis was observed 48 hpp concomitant with a second wave of cell proliferation at the wound edge. Normal epidermal thickness within the wound was achieved 72 hpp. Formation of a basement membrane occurred by 120 hpp with concomitant emergence of the SA from the wound borders. Wound healing in C. gariepinus skin involved closure of the wound and re-epithelization through cell migration with a single wave of early cell proliferation not documented in other species. Furthermore, covering of the wound by epithelium as well as the reappearance of the basement membrane and SA occurred sooner than in other fish species. (C) 2008 The Authors Journal compilation (C) 2008 The Fisheries Society of the British Isles.
Resumo:
The purpose of this study was to evaluate the effect of erbium:yttrium-aluminum-garnet (Er:YAG) laser (2.94 mu m) irradiation on the removal of root surface smear layer of extracted human teeth and to compare its efficacy with that of citric acid, ethylenediamine tetra-acetic acid (EDTA), or a gel containing a mixture of tetracycline hydrochloride (HCl) and citric acid, using scanning electron microscopy (SEM). Thirty human dentin specimens were randomly divided into six groups: G1 (control group), irrigated with 10 ml of physiologic saline solution; G2, conditioned with 24% citric acid gel; G3, conditioned with 24% EDTA gel; G4, conditioned with a 50% citric acid and tetracycline gel; G5, irradiated with Er:YAG laser (47 mJ/10 Hz/5.8 J/cm(2)/pulse); G6, irradiated with Er:YAG laser (83 mJ/10 Hz/10.3 J/cm(2)/pulse). Electron micrographs were obtained and analyzed according to a rating system. Statistical analysis was conducted with Kruskal-Wallis and Mann-Whitney tests (P < 0.05). G1 was statistically different from all the other groups; no statistically significant differences were observed between the Er:YAG laser groups and those undergoing the other treatment modalities. When the two Er:YAG laser groups were compared, the fluency of G6 was statistically more effective in smear layer removal than the one used in G5 (Mann-Whitney test, P < 0.01). Root surfaces irradiated by Er:YAG laser had more irregular contours than those treated by chemical agents. It can be concluded that all treatment modalities were effective in smear layer removal. The results of our study suggest that the Er:YAG laser can be safely used to condition diseased root surfaces effectively. Furthermore, the effect of Er:YAG laser irradiation on root surfaces should be evaluated in vivo so that its potential to enhance the healing of periodontal tissues can be assessed.
Resumo:
Background: Platelets contain an array of biologic mediators that can modulate inflammation and repair processes including proinflammatory mediators and growth factors. Previous studies have shown that periodontitis and periodontal repair are associated with platelet activation. We hypothesized that drug-induced platelet inactivation may interfere in the processes of inflammation and repair in experimental periodontitis in rats by suppressing the release of biologic mediators from platelets to the site of injury. Methods: To measure the effects on periodontitis, ligatures were placed around first molars, and aspirin (Asp, 30 mg/kg) or clopidogrel (Clo, 75 mg/kg) was given intragastrically once daily for 15 days. Interleukin-6 (IL-6), tumor necrosis factor-a (TNF-alpha), and thromboxane A(2) levels were measured by enzyme-linked immunosorbent assay. To evaluate the effects of antiplatelet drugs on periodontal repair, ligatures were removed after 15 days of periodontitis induction, and Asp or Clo were administered beginning the following day for 15 days. Periodontal repair was assessed by microcomputed tomography. Results: On periodontitis phase, Asp and Clo significantly reduced levels of TNF-alpha and II-6 (P < 0.05), but only Asp decreased thromboxane A(2) (P < 0.05). Asp and Clo decreased inflammatory infiltration; however, this reduction was more pronounced with Clo treatment (P < 0.05). Histometric analysis showed that Asp and Clo impaired alveolar bone resorption. During the repair phase and after removal of the ligatures, microcomputed tomography analysis demonstrated that treatment with Asp and Clo did not impair alveolar bone repair. Conclusion: Systemic administration of Asp and Clo attenuates the inflammation associated with periodontitis without affecting the repair process when stimulus is removed. J Periodontol 2011;82:767-777.
Resumo:
Objectives The aims of this research were to evaluate the efficacy of a bioactive glass-ceramic (Biosilicate (R)) and a bioactive glass (Biogran (R)) placed in dental sockets in the maintenance of alveolar ridge and in the osseointegration of Ti implants. Material and methods Six dogs had their low premolars extracted and the sockets were implanted with Biosilicate (R), Biogran (R) particles, or left untreated. After the extractions, measurements of width and height on the alveolar ridge were taken. After 12 weeks a new surgery was performed to take the final ridge measurements and to insert bilaterally three Ti implants in biomaterial-implanted and control sites. Eight weeks post-Ti implant placement block biopsies were processed for histological and histomorphometric analysis. The percentages of bone-implant contact (BIC), of mineralized bone area between threads (BABT), and of mineralized bone area within the mirror area (BAMA) were determined. Results The presence of Biosilicate (R) or Biogran (R) particles preserved alveolar ridge height without affecting its width. No significant differences in terms of BIC, BAMA, and BABT values were detected among Biosilicate (R), Biogran (R), and the non-implanted group. Conclusions The results of the present study indicate that filling of sockets with either Biosilicate (R) or Biogran (R) particles preserves alveolar bone ridge height and allows osseointegration of Ti implants. To cite this article:Roriz VM, Rosa AL, Peitl O, Zanotto ED, Panzeri H, de Oliveira PT. Efficacy of a bioactive glass-ceramic (Biosilicate (R)) in the maintenance of alveolar ridges and in osseointegration of titanium implants.Clin. Oral Impl. Res. 21, 2010; 148-155.doi: 10.1111/j.1600-0501.2009.01812.x.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)
Resumo:
Dissertação de mestrado em Biofísica e Bionanossistemas
Resumo:
Transforming growth factor beta (TGF-beta) and platelet-derived growth factor A (PDGFAlpha) play a central role in tissue morphogenesis and repair, but their interplay remain poorly understood. The nuclear factor I C (NFI-C) transcription factor has been implicated in TGF-beta signaling, extracellular matrix deposition, and skin appendage pathologies, but a potential role in skin morphogenesis or healing had not been assessed. To evaluate this possibility, we performed a global gene expression analysis in NFI-C(-/-) and wild-type embryonic primary murine fibroblasts. This indicated that NFI-C acts mostly to repress gene expression in response to TGF-beta1. Misregulated genes were prominently overrepresented by regulators of connective tissue inflammation and repair. In vivo skin healing revealed a faster inflammatory stage and wound closure in NFI-C(-/-) mice. Expression of PDGFA and PDGF-receptor alpha were increased in wounds of NFI-C(-/-) mice, explaining the early recruitment of macrophages and fibroblasts. Differentiation of fibroblasts to contractile myofibroblasts was also elevated, providing a rationale for faster wound closure. Taken together with the role of TGF-beta in myofibroblast differentiation, our results imply a central role of NFI-C in the interplay of the two signaling pathways and in regulation of the progression of tissue regeneration.
Resumo:
Angiogenesis, the process of generating new blood vessels, is essential to embryonic development, organ formation, tissue regeneration and remodeling, reproduction and wound healing. Also, it plays an important role in many pathological conditions, including chronic inflammation and cancer. Angiogenesis is regulated by a complex interplay of growth factors, inflammatory mediators, adhesion molecules, morphogens and guidance molecules. Transcription factor SOX18 is transiently expressed in nascent endothelial cells during embryonic development and postnatal angiogenesis, but little is known about signaling pathways controlling its expression. The aim of this study was to investigate whether pro-angiogenic molecules and pharmacological inhibitors of angiogenesis modulate SOX18 expression in endothelial cells. Therefore, we treated human umbilical vein endothelial cells (HUVEC) with angiogenic factors, extracellular matrix proteins, inflammatory cytokines and nonsteroidal anti-inflammatory drugs (NSAID) and monitored SOX18 expression. We have observed that the angiogenic factor VEGF and the inflammatory cytokine TNF increase, while the NSAID ibuprofen and NS398 decrease the SOX18 protein level. These results for the first time demonstrate that SOX18 expression is modulated by factors and drugs known to positively or negatively regulate angiogenesis. This opens the possibility of pharmacological manipulation of SOX18 gene expression in endothelial cells to stimulate or inhibit angiogenesis.
Resumo:
Collagen is highly conserved across species and has been used extensively for tissue regeneration; however, its mechanical properties are limited. A recent advance using plastic compression of collagen gels to achieve much higher concentrations significantly increases its mechanical properties at the neo-tissue level. This controlled, cell-independent process allows the engineering of biomimetic scaffolds. We have evaluated plastic compressed collagen scaffolds seeded with human bladder smooth muscle cells inside and urothelial cells on the gel surface for potential urological applications. Bladder smooth muscle and urothelial cells were visualized using scanning electron microscopy, conventional histology and immunohistochemistry; cell viability and proliferation were also quantified for 14 days in vitro. Both cell types tested proliferated on the construct surface, forming dense cell layers after 2 weeks. However, smooth muscle cells seeded within the construct, assessed with the Alamar blue assay, showed lower proliferation. Cellular distribution within the construct was also evaluated, using confocal microscopy. After 14 days of in vitro culture, 30% of the smooth muscle cells were found on the construct surface compared to 0% at day 1. Our results provide some evidence that cell-seeded plastic compressed collagen has significant potential for bladder tissue regeneration, as these materials allow efficient cell seeding inside the construct as well as cell proliferation.
Resumo:
Gliomas are routinely graded according to histopathological criteria established by the World Health Organization. Although this classification can be used to understand some of the variance in the clinical outcome of patients, there is still substantial heterogeneity within and between lesions of the same grade. This study evaluated image-guided tissue samples acquired from a large cohort of patients presenting with either new or recurrent gliomas of grades II-IV using ex vivo proton high-resolution magic angle spinning spectroscopy. The quantification of metabolite levels revealed several discrete profiles associated with primary glioma subtypes, as well as secondary subtypes that had undergone transformation to a higher grade at the time of recurrence. Statistical modeling further demonstrated that these metabolomic profiles could be differentially classified with respect to pathological grading and inter-grade conversions. Importantly, the myo-inositol to total choline index allowed for a separation of recurrent low-grade gliomas on different pathological trajectories, the heightened ratio of phosphocholine to glycerophosphocholine uniformly characterized several forms of glioblastoma multiforme, and the onco-metabolite D-2-hydroxyglutarate was shown to help distinguish secondary from primary grade IV glioma, as well as grade II and III from grade IV glioma. These data provide evidence that metabolite levels are of interest in the assessment of both intra-grade and intra-lesional malignancy. Such information could be used to enhance the diagnostic specificity of in vivo spectroscopy and to aid in the selection of the most appropriate therapy for individual patients.