970 resultados para Growth-factor-beta-1
Resumo:
In fibrotic conditions increases in TG2 activity has been linked to an increase in the deposition of extracellular matrix proteins. Using TG2 transfected Swiss 3T3 fibroblasts expressing TG2 under the control of the tetracycline-regulated inducible promoter, we demonstrate that induction of TG2 not only stimulates an increase in collagen and fibronectin deposition but also an increase in the expression of these proteins. Increased TG2 expression in these fibroblasts led to NF-kappaB activation, resulting in the increased expression of transforming growth factor (TGF) beta(1). In addition, cells overexpressing TG2 demonstrated an increase in biologically active TGFbeta(1) in the extracellular environment. A specific site-directed inhibitor of TG abolished the NF-kappaB and TGFbeta1 activation and the subsequent elevation in the synthesis and deposition of extracellular matrix proteins, confirming that this process depends on the induction of transglutaminase activity. Treatment of TG2-induced fibroblasts with nontoxic doses of nitric oxide donor S-nitroso-N-acetylpenicillamine resulted in decreased TG2 activity and apprehension of the inactive enzyme on the cell surface. This was paralleled by a reduction in activation of NF-kappaB and TGFbeta(1) production with a subsequent decrease in collagen expression and deposition. These findings support a role for NO in the regulation of TG2 function in the extracellular environment.
Resumo:
6
Resumo:
Two synthetic analogues of murine epidermal. growth factor, [Abu6, 20] mEGF4-48 (where Abu denotes amino-butyric acid) and [G1, M3, K21, H40] mEGF1-48, have been investigated by NMR spectroscopy. [Abu6, 20] mEGF4-48 was designed to determine the contribution of the 6-20 disulfide bridge to the structure and function of mEGF The overall structure of this analogue was similar to that of native mEGF, indicating that the loss of the 6-20 disulfide bridge did not affect the global fold of the molecule. Significant structural differences were observed near the N-terminus, however, with the direction of the polypeptide chain between residues four and nine being altered such that these residues were now located on the opposite face of the main beta-sheet from their position in native mEGF Thermal denaturation experiments also showed that the structure of [Abu6, 20] mEGF4-48 was less stable than that of mEGF. Removal of this disulfide bridge resulted in a significant loss of both mitogenic activity in Balb/c 3T3 cells and receptor binding on A431 cells compared with native mEGF and mEGF4-48, implying that the structural changes in [Abu6, 20] mEGF4-48, although limited to the N-terminus, were sufficient to interfere with receptor binding. The loss of binding affinity probably arose mainly from steric interactions of the dislocated N-terminal region with part of the receptor binding surface of EGF [G1, M3, K21, H40] mEGF1-48 was also synthesized in order to compare the synthetic polypeptide with the corresponding product of recombinant expression. Its mitogenic activity in Balb/c 3T3 cells was similar to that of native mEGF and analysis of its H-1 chemical shifts suggested that its structure was also very similar to native.
Resumo:
Objectives: To examine the effects of triiodothyronine (T(3)), 17 beta-estradiol (E(2)), and tamoxifen (TAM) on transforming growth factor (TGF)-alpha gene expression in primary breast cancer cell cultures and interactions between the different treatments. Methods and results: Patients included in the study (no.=12) had been newly diagnosed with breast cancer. Fresh human breast carcinoma tissue was cut into 0.3-mm slices. These slices were placed in six 35-mm dishes on 2-ml organ culture medium. Dishes received the following treatments: dish 1: ethanol; dish 2: T(3); dish 3: T(3)+TAM; dish 4: TAM; dish 5: E(2); dish 6: E(2)+TAM. TGF-alpha mRNA content was normalized to glyceraldehyde-3-phosphate dehydrogenase mRNA levels. All tissues included in this study were positive for estrogen receptor (ER) and thyroid hormone receptor expression. Treatment with T(3) for 48 h significantly increased TGF-alpha mRNA levels compared to controls (15-fold), and concomitant treatment with TAM reduced expression to 3.4-fold compared to controls. When only TAM was added to the culture medium, TGF-alpha mRNA expression increased 5.3-fold, significantly higher than with all other treatment modalities. Conclusion: We demonstrate that TGF-alpha mRNA expression is more efficiently upregulated by T(3) than E(2). Concomitant treatment with TAM had a mitigating effect on the T(3) effect, while E(2) induced TGF-alpha upregulation. Our findings show some similarities between primary culture and breast cancer cell lines, but also some important differences: a) induction of TGF-alpha, a mitogenic protein, by TAM; b) a differential effect of TAM that may depend on relative expression of ER alpha and beta; and c) supraphysiological doses of T3 may induce mitogenic signals in breast cancer tissue under conditions of low circulating E(2).. Endocrinol. Invest. 31: 1047-1051, 2008) (c) 2008, Editrice Kurtis
Resumo:
The production of Long-R-3-IGF-1 (an IGF-1 fusion analog) by constant-rate, fed-batch fermentation of Escherichia coli yielded 2.6 g fusion protein/L, corresponding to an actual IGF-1 concentration of 2.2 g/L. A novel strategy employing three distinct feeding stages was developed which raised product concentration to 4.3 g/L (3.6 g/L of IGF-1) while minimising glucose and acetate accumulation. This improved productivity was not accompanied by an increase in inclusion body size.
Resumo:
Objective: To analyze vascular density and immunolocalization of angiogenic vascular endothelial growth factor (VEGF) and its receptor Flk-1 in the proliferative and secretory eutopic human endometrium. and in three different sites of endometriosis: the ovary, bladder, and rectum. Design: Prospective study. Setting: University hospital. Patient(s): Thirty women with endometriosis (10 ovarian, 1.0 bladder, 10 rectal) and 32 control women (10 proliferative endometrium, 10 secretory endometrium, 4 normal ovary, 4 normal bladder, 4 normal rectum). Intervention(s): Normal endometrial samples were obtained from women during laparoscopic ablation of subserous myoma, and biopsy specimens of endometriosis were obtained from patients undergoing surgery for the diagnosis and treatment of endometriosis. Normal tissues of ovary, bladder, and rectum were obtained from these organs beside the lesions of endometriosis. Main Outcome Measure(S): Blood vessels were quantified according to the number of von Willebrand factor-positive endothelial cells. The VEGF and Flk-1 distribution were evaluated semiquantitatively by immunohistochemical staining. Result(s): More blood vessels were found in cases of endometriosis, particularly rectal endometriosis, compared with the respective control samples and with the eutopic endometrium, and they were localized in endometrial stroma around the glands. The VEGF and Flk-1 expression levels were also higher in cases of endometriosis, especially rectal endometriosis. Conclusion(s): Vascularization and VEGF and Flk-1 expression are significantly higher in deeply infiltrating endometriosis affecting the rectum, reinforcing the hypothesis that antiangiogenesis therapy may constitute a new modality of treatment, especially in cases of deep endometriosis involving the rectum.
Resumo:
Background and objective: Vascular endothelial growth factor (VEGF) is known to increase vascular permeability and promote angiogenesis. It is expressed in most types of pleural effusions. However, the exact role of VEGF in the development of pleural effusions has yet to be determined. The anti-VEGF mAb, bevacizumab, has been used in the treatment of cancer to reduce local angiogenesis and tumour progression. This study describes the acute effects of VEGF blockade on the expression of inflammatory cytokines and pleural fluid accumulation. Methods: One hundred and twelve New Zealand rabbits received intrapleural injections of either talc or silver nitrate. In each group, half the animals received an intravenous injection of bevacizumab, 30 min before the intrapleural agent was administered. Five animals from each subgroup were sacrificed 1, 2, 3, 4 or 7 days after the procedure. Twelve rabbits were used to evaluate vascular permeability using Evans`s blue dye. Pleural fluid volume and cytokines were quantified. Results: Animals pretreated with anti-VEGF antibody showed significant reductions in pleural fluid volumes after talc or silver nitrate injection. IL-8 levels, vascular permeability and macroscopic pleural adhesion scores were also reduced in the groups that received bevacizumab. Conclusions: This study showed that bevacizumab interferes in the acute phase of pleural inflammation induced by silver nitrate or talc, reinforcing the role of VEGF as a key mediator in the production of pleural effusions. The results also suggest that bevacizumab should probably be avoided in patients requiring pleurodesis.
beta 1 Integrin and VEGF expression in an experimental model of brain tissue heterotopia in the lung
Resumo:
Integrins and vascular endothelial growth factor (VEGF) are crucially involved in interaction, proliferation, migration, and survival of the cells. However, there is no report in the literature about beta 1 integrin and VEGF expression in heterotopic brain tissue. The aim of this study was to assess beta 1 integrin and VEGF expression in experimental brain tissue heterotopia in the lung during both fetal and neonatal periods. Twenty-four pregnant female Swiss mice were used to induce brain tissue heterotopia on the 15th gestational day. Briefly, the brain of one fetus of each dam was extracted, disaggregated, and injected into the right hemithorax of siblings. Six of these fetuses with pulmonary brain tissue implantation were collected on the 18th gestational day (group E18) and six other on the eighth postnatal day (group P8). Immunohistochemistry of the fetal trunks showed implantation of glial fibrillary acidic protein- and neuronal nuclei-positive heterotopic brain tissue, which were also positive for beta 1 integrin and VEGF in both groups E18 and P8. These results indicate that brain tissue heterotopia during fetal and postnatal period is able to complete integration with the lung tissue as well as to induce vascular proliferation which are the necessary steps for a successful implantation.
Resumo:
Association between insulin resistance (IR) and non-alcoholic fatty liver disease (NAFLD) has been reported. This prompted us to evaluate the power of the insulin sensitivity index (ISI) in association with IGFBP-1 to identify IR early in obese children/adolescents. OGTT was performed in 34 obese/overweight children/adolescents. Glucose, insulin and IGFBP-1 were measured in serum samples and ISI was calculated. Considering the presence of three or more risk factors for IR as a criterion for IR, ISI <4.6 showed 87.5% sensitivity and 94.5% specificity in diagnosing IR. IGFBP-1 was lower in the group with ISI <4.6 (p <0.01). In this group, three patients had higher than expected IGFBP-1, suggesting hepatic IR, while three patients with ISI >4.6 showed very low IGFBP-1 levels. Conclusion: ISI <4.6 is a good indicator of early peripheral IR and, associated with IGFBP-1, can identify increased risk of hepatic IR. Low IGFBP-1 levels among non-IR children may indicate increased portal insulin levels.
Resumo:
Menadione is a naphthoquinone used as a vitamin K source in animal feed that can generate reactive oxygen species (ROS) and cause apoptosis. Here, we examined whether menadione reduces development of preimplantation bovine embryos in a ROS-dependent process and tested the hypothesis that actions of menadione would be reduced by insulin-like growth factor-1 (IGF-1). Menadione caused a concentration-dependent decrease in the proportion of embryos that became blastocysts. All concentrations tested (1, 2.5, and 5.0 mu M) inhibited development. Treatment with 100 ng/ml IGF-1 reduced the magnitude of the anti-developmental effects of the two lowest menadione concentrations. Menadione also caused a concentration-dependent increase in the percent of cells positive for the TUNEL reaction. The response was lower for IGF-1-treated embryos. The effects of menadione were mediated by ROS because (1) the anti-developmental effect of menadione was blocked by the antioxidants dithiothreitol and Trolox and (2) menadione caused an increase in ROS generation. Treatment with IGF-1 did not reduce ROS formation in menadione-treated embryos. In conclusion, concentrations of menadione as low as 1.0 mu M can compromise development of bovine preimplantation embryos to the blastocyst stage of development in a ROS-dependent mechanism. Anti-developmental actions of menadione can be blocked by IGF-1 through effects downstream of ROS generation.
Resumo:
Despite wide clinical application, the efficacy of platelet-rich plasma (PRP) for repairing bone defects and enhancing osseointegration of metal implants is still subject of debate. This study aimed to evaluate the effects of a well-defined PRP-like mixture containing platelet-derived growth factor-BB, transforming growth factor (TGF)-beta 1, TGF-beta 2, albumin, fibronectin, and thrombospondin [growth factors (GFs) + proteins] on the development of the osteogenic phenotype on titanium (Ti) in vitro. Human alveolar bone-derived osteoblastic cells were subcultured on Ti discs and exposed during the first 7 days to osteogenic medium supplemented with GFs + proteins and to osteogenic medium alone thereafter up to 14 days. Control cultures were exposed to only osteogenic medium. Dose-response experiments were carried out using rat primary calvarial cells exposed to GFs + proteins and 1:10 or 1:100 dilutions of the mixture. Treated human-derived cell cultures exhibited a significantly higher number of cycling cells at days 1 and 4 and of total cells at days 4 and 7, significantly reduced alkaline phosphatase (ALP) activity at days 4, 7, and 10, and no Alizarin red-stained areas (calcium deposits) at day 14, indicating an impairment in osteoblast differentiation. Although the 1:10 and 1:100 dilutions of the mixture restored the proliferative activity of rat-derived osteogenic cells to control levels and promoted a significant increase in ALP activity at day 10 compared with GFs + proteins, mineralized nodule formation was only observed with the 1:100 dilution (similar to 50% of the control). These results showed that a PRP-like protein mixture inhibits development of the osteogenic phenotype in both human and rat osteoblastic cell cultures grown on Ti. (J Histochem Cytochem 57:265-276, 2009)
Resumo:
The ligand-binding region of the low-density lipoprotein (LDL) receptor is formed by seven N-terminal, imperfect, cysteine-rich (LB) modules. This segment is followed by an epidermal growth factor precursor homology domain with two N-terminal, tandem, EGF-like modules that are thought to participate in LDL binding and recycling of the endocytosed receptor to the cell surface. EGF-A and the concatemer, EGF-AB, of these modules were expressed in Escherichia coli. Correct protein folding of EGF-A and the concatemer EGF-AB was achieved in the presence or absence of calcium ions, in contrast to the LB modules, which require them for correct folding. Homonuclear and heteronuclear H-1-N-15 NMR spectroscopy at 17.6 T was used to determine the three-dimensional structure of the concatemer. Both modules are formed by two pairs of short, anti-parallel beta -strands. In the concatemer, these modules have a fixed relative orientation, stabilized by calcium ion-binding and hydrophobic interactions at the interface. N-15 longitudinal and transverse relaxation rates, and {H-1}-N-15 heteronuclear NOEs were used to derive a model-free description of the backbone dynamics of the molecule. The concatemer appears relatively rigid, particularly near the calcium ion-binding site at the module interface, with an average generalized order parameter of 0.85 +/- 0.11. Some mutations causing familial hypercholesterolemia may now be rationalized. Mutations of D41, D43 and E44 in the EGF-B calcium ion-binding region may affect the stability of the linker and thus the orientation of the tandem modules. The diminutive core also provides little structural stabilization, necessitating the presence of disulfide bonds. The structure and dynamics of EGF-AB contrast with the N-terminal LB modules, which require calcium ions both for folding to form the correct disulfide connectivities and for maintenance of the folded structure, and are connected by highly mobile linking peptides. (C) 2001 Academic Press.