951 resultados para Green performance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this MA thesis, test anxiety related to English exams among Finnish upper secondary school students was studied. In addition, the ways students try to cope with test anxiety were investigated. The purpose of the study was to investigate gender differences in test anxiety, the effects of test anxiety on academic performance and relationships between test anxiety, academic performance and coping strategies. Test anxiety and coping strategies were analysed as scores of questionnaire responses. Coping strategies comprised of three categories – task-orientation and preparation, seeking social support and avoidance. Academic performance was analysed as teacher ratings of general performance in English exams. In total 67 subjects were studied. The subjects were Finnish general upper secondary school students. The data were collected by using online questionnaires. This data were mainly quantitative, but also qualitative elements were included. The quantitative data were analysed by using statistical methods. The results showed that females experienced statistically significantly more test anxiety than males. In addition, a statistically significant correlation was found between test anxiety levels and academic performance ratings of the subjects: the higher the test anxiety score, the lower the academic performance rating. A meaningful correlation was found between test anxiety and seeking social support as a coping strategy: a higher test anxiety score was related to using social support as a coping strategy. However, no relationships were found between academic performance and the three coping strategies when quantitative and qualitative data were analysed. Therefore, different coping strategies per se did not seem to be related to academic performance, but instead it was assumed that the effectiveness of coping strategies is dependent on individual differences. In order to obtain more generalisable results and to gain more understanding of test anxiety and coping with it, a larger number of subjects form different areas of Finland and of different ages could be examined in future studies. Moreover, cross-national and cross-cultural studies could provide valuable information. As a practical recommendation for educational purposes, the results of this study indicated that a more individualised approach is needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Green roofs are a maturing application of best management practices for controlling urban stormwater runoff. The majority of green roofs are planted with drought resistant, higher plant species, such as the genus Sedum. However, other plant varieties, such as mosses, may be equally applicable. Residential roofs and natural terrestrial communities were sampled in both Maryland and Tennessee to determine moss community structure and species water composition. This served as a natural analog for potential green roof moss communities. During sampling, 21 species of moss were identified throughout the 37 total sites. The average percent moss cover and water composition across all roof sites was 40.7% and 38.6%, respectively and across all natural sites, 76.7% and 47.7%, respectively. Additional maximum water holding capacity procedures were completed on sedum and 19 of the 21 sampled moss species to assess their individual potential for stormwater absorption. Sedum species on average held 166% of their biomass in water, while moss species held 732%. The results of this study are used as a basis to propose moss species that will improve green roof performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The attention on green building is driven by the desire to reduce a building’s running cost over its entire life cycle. However, with the use of sustainable technologies and more environmentally friendly products in the building sector, the construction industry contributes significantly to sustainable actions of our society. Different certification systems have entered the market with the aim to measure a building’s sustainability. However, each system uses its own set of criteria for the purpose of rating. The primary goal of this study is to identify a comprehensive set of criteria for the measurement of building sustainability, and therefore to facilitate the comparison of existing rating methods. The collection and analysis of the criteria, identified through a comprehensive literature review, has led to the establishment of two additional categories besides the 3 pillars of sustainability. The comparative analyses presented in this thesis reveal strengths and weaknesses of the chosen green building certification systems - LEED, BREEAM, and DGNB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solder-joining using metallic solder alloys is an alternative to adhesive bonding. Laser-based soldering processes are especially well suited for the joining of optical components made of fragile and brittle materials such as glasses, ceramics and optical crystals due to a localized and minimized input of thermal energy. The Solderjet Bumping technique is used to assemble a miniaturized laser resonator in order to obtain higher robustness, wider thermal conductivity performance, higher vacuum and radiation compatibility, and better heat and long term stability compared with identical glued devices. The resulting assembled compact and robust green diode-pumped solid-state laser is part of the future Raman Laser Spectrometer designed for the Exomars European Space Agency (ESA) space mission 2018.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract : Although concrete is a relatively green material, the astronomical volume of concrete produced worldwide annually places the concrete construction sector among the noticeable contributors to the global warming. The most polluting constituent of concrete is cement due to its production process which releases, on average, 0.83 kg CO[subscript 2] per kg of cement. Self-consolidating concrete (SCC), a type of concrete that can fill in the formwork without external vibration, is a technology that can offer a solution to the sustainability issues of concrete industry. However, all of the workability requirements of SCC originate from a higher powder content (compared to conventional concrete) which can increase both the cost of construction and the environmental impact of SCC for some applications. Ecological SCC, Eco-SCC, is a recent development combing the advantages of SCC and a significantly lower powder content. The maximum powder content of this concrete, intended for building and commercial construction, is limited to 315 kg/m[superscript 3]. Nevertheless, designing Eco-SCC can be challenging since a delicate balance between different ingredients of this concrete is required to secure a satisfactory mixture. In this Ph.D. program, the principal objective is to develop a systematic design method to produce Eco-SCC. Since the particle lattice effect (PLE) is a key parameter to design stable Eco-SCC mixtures and is not well understood, in the first phase of this research, this phenomenon is studied. The focus in this phase is on the effect of particle-size distribution (PSD) on the PLE and stability of model mixtures as well as SCC. In the second phase, the design protocol is developed, and the properties of obtained Eco-SCC mixtures in both fresh and hardened states are evaluated. Since the assessment of robustness is crucial for successful production of concrete on large-scale, in the final phase of this work, the robustness of one the best-performing mixtures of Phase II is examined. It was found that increasing the volume fraction of a stable size-class results in an increase in the stability of that class, which in turn contributes to a higher PLE of the granular skeleton and better stability of the system. It was shown that a continuous PSD in which the volume fraction of each size class is larger than the consecutive coarser class can increase the PLE. Using such PSD was shown to allow for a substantial increase in the fluidity of SCC mixture without compromising the segregation resistance. An index to predict the segregation potential of a suspension of particles in a yield stress fluid was proposed. In the second phase of the dissertation, a five-step design method for Eco-SCC was established. The design protocol started with the determination of powder and water contents followed by the optimization of sand and coarse aggregate volume fractions according to an ideal PSD model (Funk and Dinger). The powder composition was optimized in the third step to minimize the water demand while securing adequate performance in the hardened state. The superplasticizer (SP) content of the mixtures was determined in next step. The last step dealt with the assessment of the global warming potential of the formulated Eco-SCC mixtures. The optimized Eco-SCC mixtures met all the requirements of self-consolidation in the fresh state. The 28-day compressive strength of such mixtures complied with the target range of 25 to 35 MPa. In addition, the mixtures showed sufficient performance in terms of drying shrinkage, electrical resistivity, and frost durability for the intended applications. The eco-performance of the developed mixtures was satisfactory as well. It was demonstrated in the last phase that the robustness of Eco-SCC is generally good with regards to water content variations and coarse aggregate characteristics alterations. Special attention must be paid to the dosage of SP during batching.