938 resultados para Graph-based segmentation
Resumo:
We present MBIS (Multivariate Bayesian Image Segmentation tool), a clustering tool based on the mixture of multivariate normal distributions model. MBIS supports multichannel bias field correction based on a B-spline model. A second methodological novelty is the inclusion of graph-cuts optimization for the stationary anisotropic hidden Markov random field model. Along with MBIS, we release an evaluation framework that contains three different experiments on multi-site data. We first validate the accuracy of segmentation and the estimated bias field for each channel. MBIS outperforms a widely used segmentation tool in a cross-comparison evaluation. The second experiment demonstrates the robustness of results on atlas-free segmentation of two image sets from scan-rescan protocols on 21 healthy subjects. Multivariate segmentation is more replicable than the monospectral counterpart on T1-weighted images. Finally, we provide a third experiment to illustrate how MBIS can be used in a large-scale study of tissue volume change with increasing age in 584 healthy subjects. This last result is meaningful as multivariate segmentation performs robustly without the need for prior knowledge.
Resumo:
Although various foot models were proposed for kinematics assessment using skin makers, no objective justification exists for the foot segmentations. This study proposed objective kinematic criteria to define which foot joints are relevant (dominant) in skin markers assessments. Among the studied joints, shank-hindfoot, hindfoot-midfoot and medial-lateral forefoot joints were found to have larger mobility than flexibility of their neighbour bonesets. The amplitude and pattern consistency of these joint angles confirmed their dominancy. Nevertheless, the consistency of the medial-lateral forefoot joint amplitude was lower. These three joints also showed acceptable sensibility to experimental errors which supported their dominancy. This study concluded that to be reliable for assessments using skin markers, the foot and ankle complex could be divided into shank, hindfoot, medial forefoot, lateral forefoot and toes. Kinematics of foot models with more segments must be more cautiously used.
Resumo:
Recently, several anonymization algorithms have appeared for privacy preservation on graphs. Some of them are based on random-ization techniques and on k-anonymity concepts. We can use both of them to obtain an anonymized graph with a given k-anonymity value. In this paper we compare algorithms based on both techniques in orderto obtain an anonymized graph with a desired k-anonymity value. We want to analyze the complexity of these methods to generate anonymized graphs and the quality of the resulting graphs.
Resumo:
In this research work we searched for open source libraries which supports graph drawing and visualisation and can run in a browser. Subsequent these libraries were evaluated to find out which one is the best for this task. The result was the d3.js is that library which has the greatest functionality, flexibility and customisability. Afterwards we developed an open source software tool where d3.js was included and which was written in JavaScript so that it can run browser-based.
Resumo:
Social interactions are a very important component in people"s lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Times" Blogging Heads opinion blog. The Social Network is represented as an oriented graph, whose directed links are determined by the Influence Model. The links" weights are a measure of the"influence" a person has over the other. The states of the Influence Model encode automatically extracted audio/visual features from our videos using state-of-the art algorithms. Our results are reported in terms of accuracy of audio/visual data fusion for speaker segmentation and centrality measures used to characterize the extracted social network.
A new approach to segmentation based on fusing circumscribed contours, region growing and clustering
Resumo:
One of the major problems in machine vision is the segmentation of images of natural scenes. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. The main contours of the scene are detected and used to guide the posterior region growing process. The algorithm places a number of seeds at both sides of a contour allowing stating a set of concurrent growing processes. A previous analysis of the seeds permits to adjust the homogeneity criterion to the regions's characteristics. A new homogeneity criterion based on clustering analysis and convex hull construction is proposed
Resumo:
Ett ämne som väckt intresse både inom industrin och forskningen är hantering av kundförhållanden (CRM, eng. Customer Relationship Management), dvs. en kundorienterad affärsstrategi där företagen från att ha varit produktorienterade väljer att bli mera kundcentrerade. Numera kan kundernas beteende och aktiviteter lätt registreras och sparas med hjälp av integrerade affärssystem (ERP, eng. Enterprise Resource Planning) och datalager (DW, eng. Data Warehousing). Kunder med olika preferenser och köpbeteende skapar sin egen ”signatur” i synnerhet via användningen av kundkort, vilket möjliggör mångsidig modellering av kundernas köpbeteende. För att få en översikt av kundernas köpbeteende och deras lönsamhet, används ofta kundsegmentering som en metod för att indela kunderna i grupper utgående från deras likheter. De mest använda metoderna för kundsegmentering är analytiska modeller konstruerade för en viss tidsperiod. Dessa modeller beaktar inte att kundernas beteende kan förändras med tiden. I föreliggande avhandling skapas en holistisk översikt av kundernas karaktär och köpbeteende som utöver de konventionella segmenteringsmodellerna även beaktar dynamiken i köpbeteendet. Dynamiken i en kundsegmenteringsmodell innefattar förändringar i segmentens struktur och innehåll, samt förändringen av individuella kunders tillhörighet i ett segment (s.k migrationsanalyser). Vardera förändringen modelleras, analyseras och exemplifieras med visuella datautvinningstekniker, främst med självorganiserande kartor (SOM, eng. Self-Organizing Maps) och självorganiserande tidskartor (SOTM), en vidareutveckling av SOM. Visualiseringen anteciperas underlätta tolkningen av identifierade mönster och göra processen med kunskapsöverföring mellan den som gör analysen och beslutsfattaren smidigare. Asiakkuudenhallinta (CRM) eli organisaation muuttaminen tuotepainotteisesta asiakaskeskeiseksi on herättänyt mielenkiintoa niin yliopisto- kuin yritysmaailmassakin. Asiakkaiden käyttäytymistä ja toimintaa pystytään nykyään helposti tallentamaan ja varastoimaan toiminnanohjausjärjestelmien ja tietovarastojen avulla; asiakkaat jättävät jatkuvasti piirteistään ja ostokäyttäytymisestään kertovia tietojälkiä, joita voidaan analysoida. On tavallista, että asiakkaat poikkeavat toisistaan eri tavoin, ja heidän mieltymyksensä kuten myös ostokäyttäytymisensä saattavat olla hyvinkin erilaisia. Asiakaskäyttäytymisen monimuotoisuuteen ja tuottavuuteen paneuduttaessa käytetäänkin laajalti asiakassegmentointia eli asiakkaiden jakamista ryhmiin samankaltaisuuden perusteella. Perinteiset asiakassegmentoinnin ratkaisut ovat usein yksittäisiä analyyttisia malleja, jotka on tehty tietyn aikajakson perusteella. Tämän vuoksi ne monesti jättävät huomioimatta sen, että asiakkaiden käyttäytyminen saattaa ajan kuluessa muuttua. Tässä väitöskirjassa pyritäänkin tarjoamaan holistinen kuva asiakkaiden ominaisuuksista ja ostokäyttäytymisestä tarkastelemalla kahta muutosvoimaa tiettyyn aikarajaukseen perustuvien perinteisten segmentointimallien lisäksi. Nämä kaksi asiakassegmentointimallin dynamiikkaa ovat muutokset segmenttien rakenteessa ja muutokset yksittäisten asiakkaiden kuulumisessa ryhmään. Ensimmäistä dynamiikkaa lähestytään ajallisen asiakassegmentoinnin avulla, jossa visualisoidaan ajan kuluessa tapahtuvat muutokset segmenttien rakenteissa ja profiileissa. Toista dynamiikkaa taas lähestytään käyttäen nk. segmenttisiirtymien analyysia, jossa visuaalisin keinoin tunnistetaan samantyyppisesti segmentistä toiseen vaihtavat asiakkaat. Visualisoinnin tehtävänä on tukea havaittujen kaavojen tulkitsemista sekä helpottaa tiedonsiirtoa analysoijan ja päättäjien välillä. Visuaalisia tiedonlouhintamenetelmiä, kuten itseorganisoivia karttoja ja niiden laajennuksia, käytetään osoittamaan näiden menetelmien hyödyllisyys sekä asiakkuudenhallinnassa yleisesti että erityisesti asiakassegmentoinnissa.
A new approach to segmentation based on fusing circumscribed contours, region growing and clustering
Resumo:
One of the major problems in machine vision is the segmentation of images of natural scenes. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. The main contours of the scene are detected and used to guide the posterior region growing process. The algorithm places a number of seeds at both sides of a contour allowing stating a set of concurrent growing processes. A previous analysis of the seeds permits to adjust the homogeneity criterion to the regions's characteristics. A new homogeneity criterion based on clustering analysis and convex hull construction is proposed
Resumo:
The application of automatic segmentation methods in lesion detection is desirable. However, such methods are restricted by intensity similarities between lesioned and healthy brain tissue. Using multi-spectral magnetic resonance imaging (MRI) modalities may overcome this problem but it is not always practicable. In this article, a lesion detection approach requiring a single MRI modality is presented, which is an improved method based on a recent publication. This new method assumes that a low similarity should be found in the regions of lesions when the likeness between an intensity based fuzzy segmentation and a location based tissue probabilities is measured. The usage of a normalized similarity measurement enables the current method to fine-tune the threshold for lesion detection, thus maximizing the possibility of reaching high detection accuracy. Importantly, an extra cleaning step is included in the current approach which removes enlarged ventricles from detected lesions. The performance investigation using simulated lesions demonstrated that not only the majority of lesions were well detected but also normal tissues were identified effectively. Tests on images acquired in stroke patients further confirmed the strength of the method in lesion detection. When compared with the previous version, the current approach showed a higher sensitivity in detecting small lesions and had less false positives around the ventricle and the edge of the brain
Resumo:
An entropy-based image segmentation approach is introduced and applied to color images obtained from Google Earth. Segmentation refers to the process of partitioning a digital image in order to locate different objects and regions of interest. The application to satellite images paves the way to automated monitoring of ecological catastrophes, urban growth, agricultural activity, maritime pollution, climate changing and general surveillance. Regions representing aquatic, rural and urban areas are identified and the accuracy of the proposed segmentation methodology is evaluated. The comparison with gray level images revealed that the color information is fundamental to obtain an accurate segmentation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper analyses the welfare consequences of temporary exchange rate-based stabilization programs. Differently than previous papers, however, here we assume that only a fraction of households participates in asset market transactions. With this asset market segmentation assumption, the effects of temporary programs on welfare may change drastically. Households with access to the bonds market are able to protect themselves better from the changes in the inflation rate – although at the cost of a distortion in their consumption path. As a consequence, they may decrease their inflation tax burden – which would increase for the other group of households. By the other side, when these agents that lack the access to the asset markets are credit constrained, they may welcome the program, since the government Is temporally reducing the inflation tax they have to pay. The temporary program could end up benefiting both groups, what could help to understand their popularity.
Resumo:
A very simple and robust method for ceramics grains quantitative image analysis is presented. Based on the use of optimal imaging conditions for reflective light microscopy of bulk samples, a digital image processing routine was developed for shading correction, noise suppressing and contours enhancement. Image analysis was done for grains selected according to their concavities, evaluated by perimeter ratio shape factor, to avoid consider the effects of breakouts and ghost boundaries due to ceramographic preparation limitations. As an example, the method was applied for two ceramics, to compare grain size and morphology distributions. In this case, most of artefacts introduced by ceramographic preparation could be discarded due to the use of perimeter ratio exclusion range.