957 resultados para Graph Theory


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monomer-dimer models are amongst the models in statistical mechanics which found application in many areas of science, ranging from biology to social sciences. This model describes a many-body system in which monoatomic and diatomic particles subject to hard-core interactions get deposited on a graph. In our work we provide an extension of this model to higher-order particles. The aim of our work is threefold: first we study the thermodynamic properties of the newly introduced model. We solve analytically some regular cases and find that, differently from the original, our extension admits phase transitions. Then we tackle the inverse problem, both from an analytical and numerical perspective. Finally we propose an application to aggregation phenomena in virtual messaging services.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding regulatory mechanisms in complex biological systems is an important challenge, in particular to understand disease mechanisms, and to discover new therapies and drugs. In this paper, we consider the important question of cellular regulation of phenotype. Using single gene deletion data, we address the problem of linking a phenotype to underlying functional roles in the organism and provide a sound computational and statistical paradigm that can be extended to address more complex experimental settings such as multiple deletions. We apply the proposed approaches to publicly available data sets to demonstrate strong evidence for the involvement of multi-protein complexes in the phenotypes studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chapter 1 is used to introduce the basic tools and mechanics used within this thesis. Most of the definitions used in the thesis will be defined, and we provide a basic survey of topics in graph theory and design theory pertinent to the topics studied in this thesis. In Chapter 2, we are concerned with the study of fixed block configuration group divisible designs, GDD(n; m; k; λ1; λ2). We study those GDDs in which each block has configuration (s; t), that is, GDDs in which each block has exactly s points from one of the two groups and t points from the other. Chapter 2 begins with an overview of previous results and constructions for small group size and block sizes 3, 4 and 5. Chapter 2 is largely devoted to presenting constructions and results about GDDs with two groups and block size 6. We show the necessary conditions are sufficient for the existence of GDD(n, 2, 6; λ1, λ2) with fixed block configuration (3; 3). For configuration (1; 5), we give minimal or nearminimal index constructions for all group sizes n ≥ 5 except n = 10, 15, 160, or 190. For configuration (2, 4), we provide constructions for several families ofGDD(n, 2, 6; λ1, λ2)s. Chapter 3 addresses characterizing (3, r)-regular graphs. We begin with providing previous results on the well studied class of (2, r)-regular graphs and some results on the structure of large (t; r)-regular graphs. In Chapter 3, we completely characterize all (3, 1)-regular and (3, 2)-regular graphs, as well has sharpen existing bounds on the order of large (3, r)- regular graphs of a certain form for r ≥ 3. Finally, the appendix gives computational data resulting from Sage and C programs used to generate (3, 3)-regular graphs on less than 10 vertices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An algorithm, based on ‘vertex priority values’ has been proposed to uniquely sequence and represent connectivity matrix of chemical structures of cyclic/ acyclic functionalized achiral hydrocarbons and their derivatives. In this method ‘vertex priority values’ have been assigned in terms of atomic weights, subgraph lengths, loops, and heteroatom contents. Subsequently the terminal vertices have been considered upon completing the sequencing of the core vertices. This approach provides a multilayered connectivity graph, which can be put to use in comparing two or more structures or parts thereof for any given purpose. Furthermore the basic vertex connection tables generated here are useful in the computation of characteristic matrices/ topological indices, automorphism groups, and in storing, sorting and retrieving of chemical structures from databases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Obwohl Distributionszentren (DZ) zentrale Kernelemente von Lieferketten darstellen, lässt sich gegenwärtig keine strukturierte Methodik finden, um diese objektiv, systematisch und insbesondere ganzheitlich über alle Funktionsbereiche hinweg – vom Wareneingang über die Kommissionierung bis zum Warenausgang – zu planen. Der vorliegende Artikel befasst sich mit dieser wissenschaftlichen Lücke und beschreibt wie mit Hilfe von analytisch modellierten Standardmodulen innerhalb der verschiedenen Funktionsbereiche eines DZ durch Anwendung eines graphentheoretischen Ansatzes funktionsbereichsübergreifende Varianten von DZ generiert werden können. Zur automatisierten Ermittlung der optimalen Standardmodulkombination bzw. der optimalen DZ-Variante werden modifizierte Algorithmen zur Findung der kürzesten Wege innerhalb eines Graphen angewendet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the recent past, various intrinsic connectivity networks (ICN) have been identified in the resting brain. It has been hypothesized that the fronto-parietal ICN is involved in attentional processes. Evidence for this claim stems from task-related activation studies that show a joint activation of the implicated brain regions during tasks that require sustained attention. In this study, we used functional magnetic resonance imaging (fMRI) to demonstrate that functional connectivity within the fronto-parietal network at rest directly relates to attention. We applied graph theory to functional connectivity data from multiple regions of interest and tested for associations with behavioral measures of attention as provided by the attentional network test (ANT), which we acquired in a separate session outside the MRI environment. We found robust statistical associations with centrality measures of global and local connectivity of nodes within the network with the alerting and executive control subfunctions of attention. The results provide further evidence for the functional significance of ICN and the hypothesized role of the fronto-parietal attention network. Hum Brain Mapp , 2013. © 2013 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Habitat connectivity is important for the survival of species that occupy habitat patches too small to sustain an isolated population. A prominent example of such a species is the European bison (Bison bonasus), occurring only in small, isolated herds, and whose survival will depend on establishing larger, well-connected populations. Our goal here was to assess habitat connectivity of European bison in the Carpathians. We used an existing bison habitat suitability map and data on dispersal barriers to derive cost surfaces, representing the ability of bison to move across the landscape, and to delineate potential connections (as least-cost paths) between currently occupied and potential habitat patches. Graph theory tools were then employed to evaluate the connectivity of all potential habitat patches and their relative importance in the network. Our analysis showed that existing bison herds in Ukraine are isolated. However, we identified several groups of well-connected habitat patches in the Carpathians which could host a large population of European bison. Our analysis also located important dispersal corridors connecting existing herds, and several promising locations for future reintroductions (especially in the Eastern Carpathians) that should have a high priority for conservation efforts. In general, our approach indicates the most important elements within a landscape mosaic for providing and maintaining the overall connectivity of different habitat networks and thus offers a robust and powerful tool for conservation planning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Forest connectivity restoration is a major goal in natural resource planning. Given the high amount of abandoned cultivated lands, setting efficient methods for the reforestation of agricultural lands offers a good opportunity to face this issue. However, reforestations must be carefully planned, which poses two main challenges. In first place, to determine those agricultural lands that, once reforested, would meet more effectively the planning goals. As a further step, in order to grant the success of the activity, it is fairly advisable to select those tree species that are more adapted to each particular environment. Here we intend to give response to both requirements by proposing a sequential and integrated methodology that has been implemented in two Spanish forest districts, which are formed by several landscape types that were previously defined and characterized. Using the software Conefor Sensinode, a powerful tool for quantifying habitat availability that is based on graph theory concepts, we determined the landscapes where forest planning should have connectivity as a major concern and, afterwards, we detected the agricultural patches that would contribute most to enhance connectivity if they were reforested. The subsequent reforestation species assessment was performed within these priority patches. Using penalized logistic regressions we fitted ecological niche models for the Spanish native tree species. The models were trained with species distribution data from the Spanish Forest Map and used climatic and lithological variables as predictors. Model predictions were used to build ordered lists of suitable species for each priority patch. The lists include dominant and non dominant tree species and allow adding biodiversity goals to the reforestation planning. The result of this combined methodology is a map of agricultural patches that would contribute most to uphold forest connectivity if they were reforested and a list of suitable tree species for each patch ordered by occurrence probability. Therefore the proposed methodology may be useful for suitable and efficient forest planning and landscape designing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The horizontal visibility algorithm was recently introduced as a mapping between time series and networks. The challenge lies in characterizing the structure of time series (and the processes that generated those series) using the powerful tools of graph theory. Recent works have shown that the visibility graphs inherit several degrees of correlations from their associated series, and therefore such graph theoretical characterization is in principle possible. However, both the mathematical grounding of this promising theory and its applications are in its infancy. Following this line, here we address the question of detecting hidden periodicity in series polluted with a certain amount of noise. We first put forward some generic properties of horizontal visibility graphs which allow us to define a (graph theoretical) noise reduction filter. Accordingly, we evaluate its performance for the task of calculating the period of noisy periodic signals, and compare our results with standard time domain (autocorrelation) methods. Finally, potentials, limitations and applications are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La prevalencia de las alergias está aumentando desde mediados del siglo XX, y se estima que actualmente afectan a alrededor del 2-8 % de la población, pero las causas de este aumento aún no están claras. Encontrar el origen del mecanismo por el cual una proteína inofensiva se convierte en capaz de inducir una respuesta alérgica es de vital importancia para prevenir y tratar estas enfermedades. Aunque la caracterización de alérgenos relevantes ha ayudado a mejorar el manejo clínico y a aclarar los mecanismos básicos de las reacciones alérgicas, todavía queda un largo camino para establecer el origen de la alergenicidad y reactividad cruzada. El objetivo de esta tesis ha sido caracterizar las bases moleculares de la alergenicidad tomando como modelo dos familias de panalergenos (proteínas de transferencia de lípidos –LTPs- y taumatinas –TLPs-) y estudiando los mecanismos que median la sensibilización y la reactividad cruzada para mejorar tanto el diagnóstico como el tratamiento de la alergia. Para ello, se llevaron a cabo dos estrategias: estudiar la reactividad cruzada de miembros de familias de panalérgenos; y estudiar moléculas-co-adyuvantes que pudieran favorecer la capacidad alergénica de dichas proteínas. Para estudiar la reactividad cruzada entre miembros de la misma familia de proteínas, se seleccionaron LTPs y TLPs, descritas como alergenos, tomando como modelo la alergia a frutas. Por otra parte, se estudiaron los perfiles de sensibilización a alérgenos de trigo relacionados con el asma del panadero, la enfermedad ocupacional más relevante de origen alérgico. Estos estudios se llevaron a cabo estandarizando ensayos tipo microarrays con alérgenos y analizando los resultados por la teoría de grafos. En relación al estudiar moléculas-co-adyuvantes que pudieran favorecer la capacidad alergénica de dichas proteínas, se llevaron a cabo estudios sobre la interacción de los alérgenos alimentarios con células del sistema inmune humano y murino y el epitelio de las mucosas, analizando la importancia de moléculas co-transportadas con los alérgenos en el desarrollo de una respuesta Th2. Para ello, Pru p 3(LTP y alérgeno principal del melocotón) se selección como modelo para llevarlo a cabo. Por otra parte, se analizó el papel de moléculas activadoras del sistema inmune producidas por patógenos en la inducción de alergias alimentarias seleccionando el modelo kiwi-alternaria, y el papel de Alt a 1, alérgeno mayor de dicho hongo, en la sensibilización a Act d 2, alérgeno mayor de kiwi. En resumen, el presente trabajo presenta una investigación innovadora aportando resultados de gran utilidad tanto para la mejora del diagnóstico como para nuevas investigaciones sobre la alergia y el esclarecimiento final de los mecanismos que caracterizan esta enfermedad. ABSTRACT Allergies are increasing their prevalence from mid twentieth century, and they are currently estimated to affect around 2-8% of the population but the underlying causes of this increase remain still elusive. The understanding of the mechanism by which a harmless protein becomes capable of inducing an allergic response provides us the basis to prevent and treat these diseases. Although the characterization of relevant allergens has led to improved clinical management and has helped to clarify the basic mechanisms of allergic reactions, it seems justified in aspiring to molecularly dissecting these allergens to establish the structural basis of their allergenicity and cross-reactivity. The aim of this thesis was to characterize the molecular basis of the allergenicity of model proteins belonging to different families (Lipid Transfer Proteins –LTPs-, and Thaumatin-like Proteins –TLPs-) in order to identify mechanisms that mediate sensitization and cross reactivity for developing new strategies in the management of allergy, both diagnosis and treatment, in the near future. With this purpose, two strategies have been conducted: studies of cross-reactivity among panallergen families and molecular studies of the contribution of cofactors in the induction of the allergic response by these panallergens. Following the first strategy, we studied the cross-reactivity among members of two plant panallergens (LTPs , Lipid Transfer Proteins , and TLPs , Thaumatin-like Proteins) using the peach allergy as a model. Similarly, we characterized the sensitization profiles to wheat allergens in baker's asthma development, the most relevant occupational disease. These studies were performed using allergen microarrays and the graph theory for analyzing the results. Regarding the second approach, we analyzed the interaction of plant allergens with immune and epithelial cells. To perform these studies , we examined the importance of ligands and co-transported molecules of plant allergens in the development of Th2 responses. To this end, Pru p 3, nsLTP (non-specific Lipid Transfer Protein) and peach major allergen, was selected as a model to investigate its interaction with cells of the human and murine immune systems as well as with the intestinal epithelium and the contribution of its ligand in inducing an allergic response was studied. Moreover, we analyzed the role of pathogen associated molecules in the induction of food allergy. For that, we selected the kiwi- alternaria system as a model and the role of Alt a 1 , major allergen of the fungus, in the development of Act d 2-sensitization was studied. In summary, this work presents an innovative research providing useful results for improving diagnosis and leading to further research on allergy and the final clarification of the mechanisms that characterize this disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tesis presenta un novedoso marco de referencia para el análisis y optimización del retardo de codificación y descodificación para vídeo multivista. El objetivo de este marco de referencia es proporcionar una metodología sistemática para el análisis del retardo en codificadores y descodificadores multivista y herramientas útiles en el diseño de codificadores/descodificadores para aplicaciones con requisitos de bajo retardo. El marco de referencia propuesto caracteriza primero los elementos que tienen influencia en el comportamiento del retardo: i) la estructura de predicción multivista, ii) el modelo hardware del codificador/descodificador y iii) los tiempos de proceso de cuadro. En segundo lugar, proporciona algoritmos para el cálculo del retardo de codificación/ descodificación de cualquier estructura arbitraria de predicción multivista. El núcleo de este marco de referencia consiste en una metodología para el análisis del retardo de codificación/descodificación multivista que es independiente de la arquitectura hardware del codificador/descodificador, completada con un conjunto de modelos que particularizan este análisis del retardo con las características de la arquitectura hardware del codificador/descodificador. Entre estos modelos, aquellos basados en teoría de grafos adquieren especial relevancia debido a su capacidad de desacoplar la influencia de los diferentes elementos en el comportamiento del retardo en el codificador/ descodificador, mediante una abstracción de su capacidad de proceso. Para revelar las posibles aplicaciones de este marco de referencia, esta tesis presenta algunos ejemplos de su utilización en problemas de diseño que afectan a codificadores y descodificadores multivista. Este escenario de aplicación cubre los siguientes casos: estrategias para el diseño de estructuras de predicción que tengan en consideración requisitos de retardo además del comportamiento tasa-distorsión; diseño del número de procesadores y análisis de los requisitos de velocidad de proceso en codificadores/ descodificadores multivista dado un retardo objetivo; y el análisis comparativo del comportamiento del retardo en codificadores multivista con diferentes capacidades de proceso e implementaciones hardware. ABSTRACT This thesis presents a novel framework for the analysis and optimization of the encoding and decoding delay for multiview video. The objective of this framework is to provide a systematic methodology for the analysis of the delay in multiview encoders and decoders and useful tools in the design of multiview encoders/decoders for applications with low delay requirements. The proposed framework characterizes firstly the elements that have an influence in the delay performance: i) the multiview prediction structure ii) the hardware model of the encoder/decoder and iii) frame processing times. Secondly, it provides algorithms for the computation of the encoding/decoding delay of any arbitrary multiview prediction structure. The core of this framework consists in a methodology for the analysis of the multiview encoding/decoding delay that is independent of the hardware architecture of the encoder/decoder, which is completed with a set of models that particularize this delay analysis with the characteristics of the hardware architecture of the encoder/decoder. Among these models, the ones based in graph theory acquire special relevance due to their capacity to detach the influence of the different elements in the delay performance of the encoder/decoder, by means of an abstraction of its processing capacity. To reveal possible applications of this framework, this thesis presents some examples of its utilization in design problems that affect multiview encoders and decoders. This application scenario covers the following cases: strategies for the design of prediction structures that take into consideration delay requirements in addition to the rate-distortion performance; design of number of processors and analysis of processor speed requirements in multiview encoders/decoders given a target delay; and comparative analysis of the encoding delay performance of multiview encoders with different processing capabilities and hardware implementations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The type-I intermittency route to (or out of) chaos is investigated within the horizontal visibility (HV) graph theory. For that purpose, we address the trajectories generated by unimodal maps close to an inverse tangent bifurcation and construct their associatedHVgraphs.We showhowthe alternation of laminar episodes and chaotic bursts imprints a fingerprint in the resulting graph structure. Accordingly, we derive a phenomenological theory that predicts quantitative values for several network parameters. In particular, we predict that the characteristic power-law scaling of the mean length of laminar trend sizes is fully inherited by the variance of the graph degree distribution, in good agreement with the numerics. We also report numerical evidence on how the characteristic power-law scaling of the Lyapunov exponent as a function of the distance to the tangent bifurcation is inherited in the graph by an analogous scaling of block entropy functionals defined on the graph. Furthermore, we are able to recast the full set of HV graphs generated by intermittent dynamics into a renormalization-group framework, where the fixed points of its graph-theoretical renormalization-group flow account for the different types of dynamics.We also establish that the nontrivial fixed point of this flow coincides with the tangency condition and that the corresponding invariant graph exhibits extremal entropic properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although progressive functional brain network disruption has been one of the hallmarks of Alzheimer?s Dis- ease, little is known about the origin of this functional impairment that underlies cognitive symptoms. We in- vestigated how the loss of white matter (WM) integrity disrupts the organization of the functional networks at different frequency bands. The analyses were performed in a sample of healthy elders and mild cognitive im- pairment (MCI) subjects. Spontaneous brain magnetic activity (measured with magnetoencephalography) was characterized with phase synchronization analysis, and graph theory was applied to the functional networks. We identified WM areas (using diffusion weighted magnetic resonance imaging) that showed a statistical de- pendence between the fractional anisotropy and the graph metrics. These regions are part of an episodic mem- ory network and were also related to cognitive functions. Our data support the hypothesis that disruption of the anatomical networks influences the organization at the functional level resulting in the prodromal dementia syndrome of MCI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Macroscopic brain networks have been widely described with the manifold of metrics available using graph theory. However, most analyses do not incorporate information about the physical position of network nodes. Here, we provide a multimodal macroscopic network characterization while considering the physical positions of nodes. To do so, we examined anatomical and functional macroscopic brain networks in a sample of twenty healthy subjects. Anatomical networks are obtained with a graph based tractography algorithm from diffusion-weighted magnetic resonance images (DW-MRI). Anatomical con- nections identified via DW-MRI provided probabilistic constraints for determining the connectedness of 90 dif- ferent brain areas. Functional networks are derived from temporal linear correlations between blood-oxygenation level-dependent signals derived from the same brain areas. Rentian Scaling analysis, a technique adapted from very- large-scale integration circuits analyses, shows that func- tional networks are more random and less optimized than the anatomical networks. We also provide a new metric that allows quantifying the global connectivity arrange- ments for both structural and functional networks. While the functional networks show a higher contribution of inter-hemispheric connections, the anatomical networks highest connections are identified in a dorsal?ventral arrangement. These results indicate that anatomical and functional networks present different connectivity organi- zations that can only be identified when the physical locations of the nodes are included in the analysis.