961 resultados para Gradually Truncated Lèvy Flight
Resumo:
We wish to characterize when a Lévy process X t crosses boundaries b(t), in a two-sided sense, for small times t, where b(t) satisfies very mild conditions. An integral test is furnished for computing the value of sup t→0|X t |/b(t) = c. In some cases, we also specify a function b(t) in terms of the Lévy triplet, such that sup t→0 |X t |/b(t) = 1.
Resumo:
Pardo, Patie, and Savov derived, under mild conditions, a Wiener-Hopf type factorization for the exponential functional of proper Lévy processes. In this paper, we extend this factorization by relaxing a finite moment assumption as well as by considering the exponential functional for killed Lévy processes. As a by-product, we derive some interesting fine distributional properties enjoyed by a large class of this random variable, such as the absolute continuity of its distribution and the smoothness, boundedness or complete monotonicity of its density. This type of results is then used to derive similar properties for the law of maxima and first passage time of some stable Lévy processes. Thus, for example, we show that for any stable process with $\rho\in(0,\frac{1}{\alpha}-1]$, where $\rho\in[0,1]$ is the positivity parameter and $\alpha$ is the stable index, then the first passage time has a bounded and non-increasing density on $\mathbb{R}_+$. We also generate many instances of integral or power series representations for the law of the exponential functional of Lévy processes with one or two-sided jumps. The proof of our main results requires different devices from the one developed by Pardo, Patie, Savov. It relies in particular on a generalization of a transform recently introduced by Chazal et al together with some extensions to killed Lévy process of Wiener-Hopf techniques. The factorizations developed here also allow for further applications which we only indicate here also allow for further applications which we only indicate here.
Resumo:
Enterohemorrhagic Escherichia coli (EHEC) strains comprise a broad group of bacteria, some of which cause attaching and effacing (AE) lesions and enteritis in humans and animals. Non-O157:H7 EHEC strains contain the gene efa-1 (referred to in previous publications as efa1), which influences adherence to cultured epithelial cells. An almost identical gene in enteropathogenic E. coli (lifA) mediates the inhibition of lymphocyte proliferation and proinflammatory cytokine synthesis. We have shown previously that significantly lower numbers of EHEC 05 and 0111 efa-1 mutants are shed in feces following experimental infection in calves and that these mutants exhibit reduced adherence to intestinal epithelia compared with isogenic wild-type strains. E. coli O157:H7 strains lack efa-1 but encode a homolog on the pO157 plasmid (toxB/l7095) and contain a truncated version of the efa-1 gene (efa-1'/z4332 in O island 122 of the EDL933 chromosome). Here we report that E. coli O157:H7 toxB and efa-1' single and double mutants exhibit reduced adherence to cultured epithelial cells and show reduced expression and secretion of proteins encoded by the locus of enterocyte effacement (LEE), which plays a key role in the host-cell interactions of EHEC. The activity of LEE1, LEE4, and LEE5 promoters was not significantly altered in E. coli O157:H7 strains harboring toxB or efa-1' mutations, indicating that the effect on the expression of LEE-encoded secreted proteins occurs at a posttranscriptional level. Despite affecting type III secretion, mutation of toxB and efa-1' did not significantly affect the course of fecal shedding of E. coli O157:H7 following experimental inoculation of 10- to 14-day-old calves or 6-week-old sheep. Mutation of tir caused a significant reduction in fecal shedding of E. coli O157:H7 in calves, indicating that the formation of AE lesions is important for colonization of the bovine intestine.
Resumo:
We prove Chung-type laws of the iterated logarithm for general Lévy processes at zero. In particular, we provide tools to translate small deviation estimates directly into laws of the iterated logarithm. This reveals laws of the iterated logarithm for Lévy processes at small times in many concrete examples. In some cases, exotic norming functions are derived.
Resumo:
Using a cross-layer approach, two enhancement techniques applied for adaptive modulation and coding (AMC) with truncated automatic repeat request (T-ARQ) are investigated, namely, aggressive AMC (A-AMC) and constellation rearrangement (CoRe). Aggressive AMC selects the appropriate modulation and coding schemes (MCS) to achieve higher spectral efficiency, profiting from the feasibility of using different MCSs for retransmitting a packet, whereas in the CoRe-based AMC, retransmissions of the same data packet are performed using different mappings so as to provide different degrees of protection to the bits involved, thus achieving mapping diversity gain. The performance of both schemes is evaluated in terms of average spectral efficiency and average packet loss rate, which are derived in closed-form considering transmission over Nakagami-m fading channels. Numerical results and comparisons are provided. In particular, it is shown that A-AMC combined with T-ARQ yields higher spectral efficiency than the AMC-based conventional scheme while keeping the achieved packet loss rate closer to the system's requirement, and that it can achieve larger spectral efficiency objectives than that of the scheme using AMC along with CoRe.
Resumo:
Persistent contrails are an important climate impact of aviation which could potentially be reduced by re-routing aircraft to avoid contrailing; however this generally increases both the flight length and its corresponding CO emissions. Here, we provide a simple framework to assess the trade-off between the climate impact of CO emissions and contrails for a single flight, in terms of the absolute global warming potential and absolute global temperature potential metrics for time horizons of 20, 50 and 100 years. We use the framework to illustrate the maximum extra distance (with no altitude changes) that can be added to a flight and still reduce its overall climate impact. Small aircraft can fly up to four times further to avoid contrailing than large aircraft. The results have a strong dependence on the applied metric and time horizon. Applying a conservative estimate of the uncertainty in the contrail radiative forcing and climate efficacy leads to a factor of 20 difference in the maximum extra distance that could be flown to avoid a contrail. The impact of re-routing on other climatically-important aviation emissions could also be considered in this framework.
Resumo:
The pollen beetle, Meligethes aeneus, is a significant pest of oilseed rape crops and there is considerable research effort focused on developing novel, sustainable methods of integrated control. These insects rely on flight for all dispersal movements and we have investigated their flight patterns using a novel combination of data from suction traps, vertical-looking radar and field counts. Analysis of these preliminary data will help determine the best timing for different control measures within an integrated pest management strategy.
Resumo:
We investigated the plume structure of a piezo-electric sprayer system, set up to release ethanol in a wind tunnel, using a fast response mini-photoionizaton detector. We recorded the plume structure of four different piezo-sprayer configurations: the sprayer alone; with a 1.6-mm steel mesh shield; with a 3.2-mm steel mesh shield; and with a 5 cm circular upwind baffle. We measured a 12 × 12-mm core at the center of the plume, and both a horizontal and vertical cross-section of the plume, all at 100-, 200-, and 400-mm downwind of the odor source. Significant differences in plume structure were found among all configurations in terms of conditional relative mean concentration, intermittency, ratio of peak concentration to conditional mean concentration, and cross-sectional area of the plume. We then measured the flight responses of the almond moth, Cadra cautella, to odor plumes generated with the sprayer alone, and with the upwind baffle piezo-sprayer configuration, releasing a 13:1 ratio of (9Z,12E)-tetradecadienyl acetate and (Z)-9-tetradecenyl acetate diluted in ethanol at release rates of 1, 10, 100, and 1,000 pg/min. For each configuration, differences in pheromone release rate resulted in significant differences in the proportions of moths performing oriented flight and landing behaviors. Additionally, there were apparent differences in the moths’ behaviors between the two sprayer configurations, although this requires confirmation with further experiments. This study provides evidence that both pheromone concentration and plume structure affect moth orientation behavior and demonstrates that care is needed when setting up experiments that use a piezo-electric release system to ensure the optimal conditions for behavioral observations.
Resumo:
Aircraft do not fly through a vacuum, but through an atmosphere whose meteorological characteristics are changing because of global warming. The impacts of aviation on climate change have long been recognised, but the impacts of climate change on aviation have only recently begun to emerge. These impacts include intensified turbulence and increased take-off weight restrictions. Here we investigate the influence of climate change on flight routes and journey times. We feed synthetic atmospheric wind fields generated from climate model simulations into a routing algorithm of the type used operationally by flight planners. We focus on transatlantic flights between London and New York, and how they change when the atmospheric concentration of carbon dioxide is doubled. We find that a strengthening of the prevailing jet-stream winds causes eastbound flights to significantly shorten and westbound flights to significantly lengthen in all seasons. Eastbound and westbound crossings in winter become approximately twice as likely to take under 5 h 20 min and over 7 h 00 min, respectively. For reasons that are explained using a conceptual model, the eastbound shortening and westbound lengthening do not cancel out, causing round-trip journey times to increase. Even assuming no future growth in aviation, the extrapolation of our results to all transatlantic traffic suggests that aircraft will collectively be airborne for an extra 2000 h each year, burning an extra 7.2 million gallons of jet fuel at a cost of US$ 22 million, and emitting an extra 70 million kg of carbon dioxide, which is equivalent to the annual emissions of 7100 average British homes. Our results provide further evidence of the two-way interaction between aviation and climate change.
Resumo:
The variation of wind-optimal transatlantic flight routes and their turbulence potential is investigated to understand how upper-level winds and large-scale flow patterns can affect the efficiency and safety of long-haul flights. In this study, the wind-optimal routes (WORs) that minimize the total flight time by considering wind variations are modeled for flights between John F. Kennedy International Airport (JFK) in New York, New York, and Heathrow Airport (LHR) in London, United Kingdom, during two distinct winter periods of abnormally high and low phases of North Atlantic Oscillation (NAO) teleconnection patterns. Eastbound WORs approximate the JFK–LHR great circle (GC) route following northerly shifted jets in the +NAO period. Those WORs deviate southward following southerly shifted jets during the −NAO period, because eastbound WORs fly closely to the prevailing westerly jets to maximize tailwinds. Westbound WORs, however, spread meridionally to avoid the jets near the GC in the +NAO period to minimize headwinds. In the −NAO period, westbound WORs are north of the GC because of the southerly shifted jets. Consequently, eastbound WORs are faster but have higher probabilities of encountering clear-air turbulence than westbound ones, because eastbound WORs are close to the jet streams, especially near the cyclonic shear side of the jets in the northern (southern) part of the GC in the +NAO (−NAO) period. This study suggests how predicted teleconnection weather patterns can be used for long-haul strategic flight planning, ultimately contributing to minimizing aviation’s impact on the environment