986 resultados para Graded Quantum Yang-baxter Reflection Equation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to develop an efficient numerical algorithm for the self-consistent solution of Schrodinger and Poisson equations in one-dimensional systems. The goal is to compute the charge-control and capacitance-voltage characteristics of quantum wire transistors. Design/methodology/approach - The paper presents a numerical formulation employing a non-uniform finite difference discretization scheme, in which the wavefunctions and electronic energy levels are obtained by solving the Schrodinger equation through the split-operator method while a relaxation method in the FTCS scheme ("Forward Time Centered Space") is used to solve the two-dimensional Poisson equation. Findings - The numerical model is validated by taking previously published results as a benchmark and then applying them to yield the charge-control characteristics and the capacitance-voltage relationship for a split-gate quantum wire device. Originality/value - The paper helps to fulfill the need for C-V models of quantum wire device. To do so, the authors implemented a straightforward calculation method for the two-dimensional electronic carrier density n(x,y). The formulation reduces the computational procedure to a much simpler problem, similar to the one-dimensional quantization case, significantly diminishing running time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure of additional electromagnetic fields to the Aharonov-Bohm field, for which the Schrodinger, Klein-Gordon, and Dirac equations can be solved exactly are described and the corresponding exact solutions are found. It is demonstrated that aside from the known cases (a constant and uniform magnetic field that is parallel to the Aharonov-Bohm solenoid, a static spherically symmetrical electric field, and the field of a magnetic monopole), there are broad classes of additional fields. Among these new additional fields we have physically interesting electric fields acting during a finite time or localized in a restricted region of space. There are additional time-dependent uniform and isotropic electric fields that allow exact solutions of the Schrodinger equation. In the relativistic case there are additional electric fields propagating along the Aharonov-Bohm solenoid with arbitrary electric pulse shape. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4714352]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we study the effects of a longitudinal periodic potential on a parabolic quantum wire defined in a two-dimensional electron gas with Rashba spin-orbit interaction. For an infinite wire superlattice we find, by direct diagonalization, that the energy gaps are shifted away from the usual Bragg planes due to the Rashba spin-orbit interaction. Interestingly, our results show that the location of the band gaps in energy can be controlled via the strength of the Rashba spin-orbit interaction. We have also calculated the charge conductance through a periodic potential of a finite length via the nonequilibrium Green's function method combined with the Landauer formalism. We find dips in the conductance that correspond well to the energy gaps of the infinite wire superlattice. From the infinite wire energy dispersion, we derive an equation relating the location of the conductance dips as a function of the (gate controllable) Fermi energy to the Rashba spin-orbit coupling strength. We propose that the strength of the Rashba spin-orbit interaction can be extracted via a charge conductance measurement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, we present our work about some generalisations of ideas, techniques and physical interpretations typical for integrable models to one of the most outstanding advances in theoretical physics of nowadays: the AdS/CFT correspondences. We have undertaken the problem of testing this conjectured duality under various points of view, but with a clear starting point - the integrability - and with a clear ambitious task in mind: to study the finite-size effects in the energy spectrum of certain string solutions on a side and in the anomalous dimensions of the gauge theory on the other. Of course, the final desire woul be the exact comparison between these two faces of the gauge/string duality. In few words, the original part of this work consists in application of well known integrability technologies, in large parte borrowed by the study of relativistic (1+1)-dimensional integrable quantum field theories, to the highly non-relativisic and much complicated case of the thoeries involved in the recent conjectures of AdS5/CFT4 and AdS4/CFT3 corrspondences. In details, exploiting the spin chain nature of the dilatation operator of N = 4 Super-Yang-Mills theory, we concentrated our attention on one of the most important sector, namely the SL(2) sector - which is also very intersting for the QCD understanding - by formulating a new type of nonlinear integral equation (NLIE) based on a previously guessed asymptotic Bethe Ansatz. The solutions of this Bethe Ansatz are characterised by the length L of the correspondent spin chain and by the number s of its excitations. A NLIE allows one, at least in principle, to make analytical and numerical calculations for arbitrary values of these parameters. The results have been rather exciting. In the important regime of high Lorentz spin, the NLIE clarifies how it reduces to a linear integral equations which governs the subleading order in s, o(s0). This also holds in the regime with L ! 1, L/ ln s finite (long operators case). This region of parameters has been particularly investigated in literature especially because of an intriguing limit into the O(6) sigma model defined on the string side. One of the most powerful methods to keep under control the finite-size spectrum of an integrable relativistic theory is the so called thermodynamic Bethe Ansatz (TBA). We proposed a highly non-trivial generalisation of this technique to the non-relativistic case of AdS5/CFT4 and made the first steps in order to determine its full spectrum - of energies for the AdS side, of anomalous dimensions for the CFT one - at any values of the coupling constant and of the size. At the leading order in the size parameter, the calculation of the finite-size corrections is much simpler and does not necessitate the TBA. It consists in deriving for a nonrelativistc case a method, invented for the first time by L¨uscher to compute the finite-size effects on the mass spectrum of relativisic theories. So, we have formulated a new version of this approach to adapt it to the case of recently found classical string solutions on AdS4 × CP3, inside the new conjecture of an AdS4/CFT3 correspondence. Our results in part confirm the string and algebraic curve calculations, in part are completely new and then could be better understood by the rapidly evolving developments of this extremely exciting research field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research work concerns the analysis of the foundations of Quantum Field Theory carried out from an educational perspective. The whole research has been driven by two questions: • How the concept of object changes when moving from classical to contemporary physics? • How are the concepts of field and interaction shaped and conceptualized within contemporary physics? What makes quantum field and interaction similar to and what makes them different from the classical ones? The whole work has been developed through several studies: 1. A study aimed to analyze the formal and conceptual structures characterizing the description of the continuous systems that remain invariant in the transition from classical to contemporary physics. 2. A study aimed to analyze the changes in the meanings of the concepts of field and interaction in the transition to quantum field theory. 3. A detailed study of the Klein-Gordon equation aimed at analyzing, in a case considered emblematic, some interpretative (conceptual and didactical) problems in the concept of field that the university textbooks do not address explicitly. 4. A study concerning the application of the “Discipline-Culture” Model elaborated by I. Galili to the analysis of the Klein-Gordon equation, in order to reconstruct the meanings of the equation from a cultural perspective. 5. A critical analysis, in the light of the results of the studies mentioned above, of the existing proposals for teaching basic concepts of Quantum Field Theory and particle physics at the secondary school level or in introductory physics university courses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

My work concerns two different systems of equations used in the mathematical modeling of semiconductors and plasmas: the Euler-Poisson system and the quantum drift-diffusion system. The first is given by the Euler equations for the conservation of mass and momentum, with a Poisson equation for the electrostatic potential. The second one takes into account the physical effects due to the smallness of the devices (quantum effects). It is a simple extension of the classical drift-diffusion model which consists of two continuity equations for the charge densities, with a Poisson equation for the electrostatic potential. Using an asymptotic expansion method, we study (in the steady-state case for a potential flow) the limit to zero of the three physical parameters which arise in the Euler-Poisson system: the electron mass, the relaxation time and the Debye length. For each limit, we prove the existence and uniqueness of profiles to the asymptotic expansion and some error estimates. For a vanishing electron mass or a vanishing relaxation time, this method gives us a new approach in the convergence of the Euler-Poisson system to the incompressible Euler equations. For a vanishing Debye length (also called quasineutral limit), we obtain a new approach in the existence of solutions when boundary layers can appear (i.e. when no compatibility condition is assumed). Moreover, using an iterative method, and a finite volume scheme or a penalized mixed finite volume scheme, we numerically show the smallness condition on the electron mass needed in the existence of solutions to the system, condition which has already been shown in the literature. In the quantum drift-diffusion model for the transient bipolar case in one-space dimension, we show, by using a time discretization and energy estimates, the existence of solutions (for a general doping profile). We also prove rigorously the quasineutral limit (for a vanishing doping profile). Finally, using a new time discretization and an algorithmic construction of entropies, we prove some regularity properties for the solutions of the equation obtained in the quasineutral limit (for a vanishing pressure). This new regularity permits us to prove the positivity of solutions to this equation for at least times large enough.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In dieser Arbeit werden Quantum-Hydrodynamische (QHD) Modelle betrachtet, die ihren Einsatz besonders in der Modellierung von Halbleiterbauteilen finden. Das QHD Modell besteht aus den Erhaltungsgleichungen für die Teilchendichte, das Momentum und die Energiedichte, inklusive der Quanten-Korrekturen durch das Bohmsche Potential. Zu Beginn wird eine Übersicht über die bekannten Ergebnisse der QHD Modelle unter Vernachlässigung von Kollisionseffekten gegeben, die aus ein­em Schrödinger-System für den gemischten-Zustand oder aus der Wigner-Glei­chung hergeleitet werden können. Nach der Reformulierung der eindimensionalen QHD Gleichungen mit linearem Potential als stationäre Schrö­din­ger-Gleichung werden die semianalytischen Fassungen der QHD Gleichungen für die Gleichspannungs-Kurve betrachtet. Weiterhin werden die viskosen Stabilisierungen des QHD Modells be­rück­sich­tigt, sowie die von Gardner vorgeschlagene numerische Viskosität für das {sf upwind} Finite-Differenzen Schema berechnet. Im Weiteren wird das viskose QHD Modell aus der Wigner-Glei­chung mit Fokker-Planck Kollisions-Ope­ra­tor hergeleitet. Dieses Modell enthält die physikalische Viskosität, die durch den Kollision-Operator eingeführt wird. Die Existenz der Lösungen (mit strikt positiver Teilchendichte) für das isotherme, stationäre, eindimensionale, viskose Modell für allgemeine Daten und nichthomogene Randbedingungen wird gezeigt. Die dafür notwendigen Abschätzungen hängen von der Viskosität ab und erlauben daher den Grenzübergang zum nicht-viskosen Fall nicht. Numerische Simulationen der Resonanz-Tunneldiode modelliert mit dem nichtisothermen, stationären, eindimensionalen, viskosen QHD Modell zeigen den Einfluss der Viskosität auf die Lösung. Unter Verwendung des von Degond und Ringhofer entwickelten Quanten-Entropie-Minimierungs-Verfahren werden die allgemeinen QHD-Gleichungen aus der Wigner-Boltzmann-Gleichung mit dem BGK-Kollisions-Operator hergeleitet. Die Herleitung basiert auf der vorsichtige Entwicklung des Quanten-Max­well­ians in Potenzen der skalierten Plankschen Konstante. Das so erhaltene Modell enthält auch vertex-Terme und dispersive Terme für die Ge­schwin­dig­keit. Dadurch bleibt die Gleichspannungs-Kurve für die Re­so­nanz-Tunnel­diode unter Verwendung des allgemeinen QHD Modells in einer Dimension numerisch erhalten. Die Ergebnisse zeigen, dass der dispersive Ge­schwin­dig­keits-Term die Lösung des Systems stabilisiert.