966 resultados para Gold nanoparticle


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computed tomography (CT) is one of the most valuable modalities for in vivo imaging because it is fast, high-resolution, cost-effective, and non-invasive. Moreover, CT is heavily used not only in the clinic (for both diagnostics and treatment planning) but also in preclinical research as micro-CT. Although CT is inherently effective for lung and bone imaging, soft tissue imaging requires the use of contrast agents. For small animal micro-CT, nanoparticle contrast agents are used in order to avoid rapid renal clearance. A variety of nanoparticles have been used for micro-CT imaging, but the majority of research has focused on the use of iodine-containing nanoparticles and gold nanoparticles. Both nanoparticle types can act as highly effective blood pool contrast agents or can be targeted using a wide variety of targeting mechanisms. CT imaging can be further enhanced by adding spectral capabilities to separate multiple co-injected nanoparticles in vivo. Spectral CT, using both energy-integrating and energy-resolving detectors, has been used with multiple contrast agents to enable functional and molecular imaging. This review focuses on new developments for in vivo small animal micro-CT using novel nanoparticle probes applied in preclinical research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methods to control the dispersion of gold in supported heterogeneous catalysts are very valuable due to the strong nanoparticle size dependence on their activity and selectivity towards many reactions. Additionally, the ability to disperse large, inactive gold nanoparticles to smaller nanoparticles provides an opportunity to reactivate, stabilise and increase the lifetime of gold catalysts making them more practical for industrial applications. Previously it has been demonstrated that the use of gas phase iodomethane (J. Am. Chem. Soc., 2009, 131, 6973; Angew. Chem., Int. Ed., 2011, 50, 8912) was able to re-disperse gold from >20 nm particles to dimers and trimers. In the current work, we show that this technique can be applied using less hazardous halohydrocarbons treatments, both in the gas phase and the liquid phase. The ability of these individual halohydrocarbons to re-disperse gold as well as the extent to which leaching occurs is assessed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The absolute yield of hydroxyl radicals per unit of deposited X-ray energy is determined for the first time for irradiated aqueous solutions containing metal nanoparticles based on a “reference” protocol. Measurements are made as a function of dose rate and nanoparticle concentration. Possible mechanisms for hydroxyl radical production are considered in turn: energy deposition in the nanoparticles followed by its transport into the surrounding environment is unable to account for observed yield whereas energy deposition in the water followed by a catalytic-like reaction at the water-nanoparticle interface can account for the total yield and its dependence on dose rate and nanoparticle concentration. This finding is important because current models used to account for nanoparticle enhancement to radiobiological damage only consider the primary interaction with the nanoparticle, not with the surrounding media. Nothing about the new mechanism appears to be specific to gold, the main requirements being the formation of a structured water layer in the vicinity of the nanoparticle possibly through the interaction of its charge and the water dipoles. The massive hydroxyl radical production is relevant to a number of application fields, particularly nanomedicine since the hydroxyl radical is responsible for the majority of radiation-induced DNA damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, a facile method was developed for preparing high concentration of monodispersed gold nanoparticles (NPs) at room temperature from gold(III) chloride by using different media based on N,N-dimethylformamide or water solutions containing a protic ionic liquid (PIL), namely, the octylammonium formate or the bis(2-ethyl-hexyl)ammonium formate, based on which both PILs were used as redox-active structuring media. The formation of gold NPs in these systems was then characterized using UV-visible spectroscopy, transmission electron microscopy, and dynamic light scattering. From these investigations, it appears that the structure and aggregation pathway of PILs in selected solvents affect strongly the formation, growth, the shape, and the size of gold NPs. In fact, by using this approach, the shape-/ size-controlled gold NPs (branched and spherical) can be generated under mild condition. This approach suggests also a wealth of potential for these designer nanomaterials within the biomedical, materials, and catalysis communities by using designer and safer media based on PILs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is considerable interest in the use of heavy atom nanoparticles as theranostic contrast agents due to their high radiation cross-section compared to soft tissue. However, published studies have primarily focused on applications of gold nanoparticles. This study applies Monte Carlo radiation transport modelling using Geant4 to evaluate the macro- and micro-scale radiation dose enhancement following X-ray irradiation with both imaging and therapeutic energies on nanoparticles consisting of stable elements heavier than silicon. An approach based on the Local Effect Model was also used to assess potential biological impacts. While macroscopic dose enhancement is well predicted by simple absorption cross-sections, nanoscale dose deposition has a much more complex dependency on atomic number, with local maxima around germanium (Z = 32) and gadolinium (Z = 64), driven by variations in secondary Auger electron spectra, which translate into significant variations in biological effectiveness. These differences may provide a valuable tool for predicting and elucidating fundamental mechanisms of these agents as they move towards clinical application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiation resistance and toxicity in normal tissues are limiting factors in the efficacy of radiotherapy. Gold nanoparticles (GNPs) have been shown to be effective at enhancing radiation-induced cell death, and were initially proposed to physically enhance the radiation dose deposited. However, biological responses of GNP radiosensitization based on physical assumptions alone are not predictive of radiosensitisation and therefore there is a fundamental research need to determine biological mechanisms of response to GNPs alone and in combination with ionising radiation. This study aimed to identify novel mechanisms of cancer cell radiosensitisation through the use of GNPs, focusing on their ability to induce cellular oxidative stress and disrupt mitochondrial function. Using N-acetyl-cysteine, we found mitochondrial oxidation to be a key event prior to radiation for the radiosensitisation of cancer cells and suggests the overall cellular effects of GNP radiosensitisation are a result of their interaction with protein disulphide isomerase (PDI). This investigation identifies PDI and mitochondrial oxidation as novel targets for radiosensitisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese dout., Ciências Biotecnológicas, Universidade do Algarve, 2009

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much effort has been devoted to the synthesis of gold nanoparticles with different shapes, including the zero-dimensional nanospheres, one dimensional nanorods, and two-dimensional nanoplates. Compared to zero or one dimensional nanostructures, the synthesis of two-dimensional nanostructures in high yield has always been more involved, often requiring complex and time-consuming steps such as morphology transformation from the nanospheres, or the seeded growth process. Herein we report a high yield method for gold nanoplate synthesis using the extract of unicellular green alga Chlorella vulgaris, which can be carried out under ambient conditions. More than 90% of the total nanoparticle population is of the platelet morphology, surpassing the previously reported value of 45%. The control of the anisotropic growth of different planes; as well as the lateral size, has also been partially optimized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a 2.0 nm nanoparticle (low limit synthesized system) is compared to possible simplified models: passivated clusters, small (1.3 nm) nanoparticles and sets of plane surfaces. Our density functional theory results suggest that even when geometric aspects are properly described by the simplifications considered, electronic properties might be very different, especially when edge atoms are not properly taken into account in the nanoparticle`s modeling. In addition, we propose a protocol that might help future theoretical descriptions of nanoparticles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work describes the synthesis of platinum nanoparticles followed by their electrophoretic deposition onto transparent fluorine-doped tin oxide electrodes. The nano-Pt-modified electrodes were characterized by voltammetric studies in acidic solutions showing a great electrocatalytic behavior towards H(+) reduction being very interesting for fuel cell applications. Morphological characterization was performed by atomic force microscopy on different modified electrodes showing a very rough surface which can be tuned by means of time of deposition. Also, nickel hydroxide thin films were galvanostatically grown onto these electrodes showing an interesting electrochemical behavior as sharper peaks, indicating a faster ionic exchange from the electrolyte to the film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synergistic effect produced by metallic nanoparticles when incorporated into different systems empowers a research field that is growing rapidly. In addition, organometallic materials are at the center of intensive research with diverse applications such as light-emitting devices, transistors, solar cells, and sensors. The Langmuir-Blodgett (LB) technique has proven to be suitable to address challenges inherent to organic devices, since the film properties can be tuned at the molecular level. Here we report a strategy to incorporate gold nanoparticles (AuNPs) into the LB film by co-deposition in order to achieve surface-enhanced Raman scattering (SERS) of the zinc(II)-protoporphyrin (IX) dimethyl ester (ZnPPIX-DME). Prior to the LB co-deposition, the properties of the Langmuir monolayer of ZnPPIX-DME at the air-water interface, containing AuNPs in the subphase, are studied through the surface-pressure versus mean molecular area (π-A) isotherms. The ZnPPIX-DME+AuNPs π-A isotherm presented a significant shift to higher molecular area, suggesting an interaction between both ZnPPIX-DME molecules and AuNPs. Those interactions are a key factor allowing the co-deposition of both AuNPs and ZnPPIX-DME molecules onto a solid substrate, thus forming the LB film. SERS of ZnPPIX-DME was successfully attained, ensuring the spatial distribution of the AuNPs. Higher enhancement factors were found at AuNP aggregates, as a result of the intense local electromagnetic field found in the metal nanoparticle aggregates. The main vibrational bands observed in the SERS spectra suggest a physical adsorption of the ZnPPIX-DME onto the surface of AuNPs. The latter is not only in agreement with the interactions pointed out by the π-A isotherms but also suggests that this interaction is kept upon LB film co-deposition.