959 resultados para Glia, neuron, synapse
Resumo:
We report on two patients with a history of chronic exposure to organochlorine insecticides who developed clinical and electromyographic signs and symptoms of chronic motor neuron disease. Measurements of aldrin, lindane and heptachlor confirmed the intoxication. We emphasize the importance of searching for toxic and environmental factors in cases of motor neuron disease especially in Third World countries, where workers usually wear no adequate protective equipment.
Resumo:
Members of the subfamily Alphaherpesvirinae use the epithelium of the upper respiratory and/or genital tract as preferential sites for primary replication. However, bovine herpesvirus 5 (BoHV5) is neurotropic and neuroinvasive and responsible for meningoencephalitis in cattle and in animal models. A related virus, BoHV1 has also been occasionally implicated in natural cases of neurological infection and disease in cattle. The aim of the present study was to assess the in vitro effects of BoHV1 and BoHV5 replication in neuron-like cells. Overall, cytopathic effects, consisting of floating rounded cells, giant cells and monolayer lysis, induced by both viruses at 48 h postinfection (p.i.) resulted in a loss of cell viability and high virus titres (r = 0.978). The BoHV1 Cooper strain produced the lowest titres in neuron-like cells, although viral DNA was detected in infected cells during all experiments. Virus replication in infected cells was demonstrated by immunocytochemistry, flow cytometry and qPCR assays. BoHV antigens were better visualized at 48 h p.i. and flow cytometry analysis showed that SV56/90 and Los Angeles antigens were present at higher levels. In spite of the fact that BoHV titres dropped at 48 h p.i, viral DNA remained detectable until 120 h p.i. Sensitive TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) and annexin V assays were used to identify apoptosis. BoHV5 induced death in approximately 50 % of cells within 24 h p.i., similar to what has been observed for BoHV1 Los Angeles. Infection with the BoHV1 Cooper strain resulted in 26.37 % of cells being in the early stages of apoptosis; 63.69 % of infected cells were considered viable. Modulation of mitochondrial function, as measured by mitochondrial membrane depolarization, was synchronous with the virus replication cycle, cell viability and virus titres at 48 h p.i. Our results indicate that apoptosis plays an important role in preventing neuronal death and provides a bovine-derived in vitro system to study herpesvirus-neuron interactions.
Resumo:
There has been tremendous progress in understanding neural stem cell (NSC) biology, with genetic and cell biological methods identifying sequential gene expression and molecular interactions guiding NSC specification into distinct neuronal and glial populations during development. Data has emerged on the possible exploitation of NSC-based strategies to repair adult diseased brain. However, despite increased information on lineage specific transcription factors, cell-cycle regulators and epigenetic factors involved in the fate and plasticity of NSCs, understanding of extracellular cues driving the behavior of embryonic and adult NSCs is still very limited. Knowledge of factors regulating brain development is crucial in understanding the pathogenetic mechanisms of brain dysfunction. Since injury-activated repair mechanisms in adult brain often recapitulate ontogenetic events, the identification of these players will also reveal novel regenerative strategies. Here, we highlight the purinergic system as a key emerging player in the endogenous control of NSCs. Purinergic signalling molecules (ATP, UTP and adenosine) act with growth factors in regulating the synchronized proliferation, migration, differentiation and death of NSCs during brain and spinal cord development. At early stages of development, transient and time-specific release of ATP is critical for initiating eye formation; once anatomical CNS structures are defined, purinergic molecules participate in calcium-dependent neuron-glia communication controlling NSC behaviour. When development is complete, some purinergic mechanisms are silenced, but can be re-activated in adult brain after injury, suggesting a role in regeneration and self-repair. Targeting the purinergic system to develop new strategies for neurodevelopmental disorders and neurodegenerative diseases will be also discussed.
Resumo:
Circadian rhythms in pacemaker cells persist for weeks in constant darkness, while in other types of cells the molecular oscillations that underlie circadian rhythms damp rapidly under the same conditions. Although much progress has been made in understanding the biochemical and cellular basis of circadian rhythms, the mechanisms leading to damped or self-sustained oscillations remain largely unknown. There exist many mathematical models that reproduce the circadian rhythms in the case of a single cell of the Drosophila fly. However, not much is known about the mechanisms leading to coherent circadian oscillation in clock neuron networks. In this work we have implemented a model for a network of interacting clock neurons to describe the emergence (or damping) of circadian rhythms in Drosophila fly, in the absence of zeitgebers. Our model consists of an array of pacemakers that interact through the modulation of some parameters by a network feedback. The individual pacemakers are described by a well-known biochemical model for circadian oscillation, to which we have added degradation of PER protein by light and multiplicative noise. The network feedback is the PER protein level averaged over the whole network. In particular, we have investigated the effect of modulation of the parameters associated with (i) the control of net entrance of PER into the nucleus and (ii) the non-photic degradation of PER. Our results indicate that the modulation of PER entrance into the nucleus allows the synchronization of clock neurons, leading to coherent circadian oscillations under constant dark condition. On the other hand, the modulation of non-photic degradation cannot reset the phases of individual clocks subjected to intrinsic biochemical noise.
Resumo:
Background: A possible viral etiology has been documented in the genesis of motor neuron disorders and acquired peripheral neuropathies, mainly due to the vulnerability of peripheral nerves and the anterior horn to certain viruses. In recent years, several reports show association of HIV infection with Amyotrophic Lateral Sclerosis Syndrome, Motor Neuron Diseases and peripheral neuropathies. Objective: To report a case of an association between Motor Neuron Disease and Acquired Axonal neuropathy in HIV infection, and describe the findings of neurological examination, cerebrospinal fluid, neuroimaging and electrophysiology. Methods: The patient underwent neurological examination. General medical examinations were performed, including, specific neuromuscular tests, analysis of cerebrospinal fluid, muscle biopsy and imaging studies. Results and Discussion: The initial clinical presentation of our case was marked by cramps and fasciculations with posterior distal paresis and atrophy in the left arm. We found electromyography tracings with deficits in the anterior horn of the spinal cord and peripheral nerves. Dysphagia and release of primitive reflexes were also identified. At the same time, the patient was informed to be HIV positive with high viral load. He received antiretroviral therapy, with load control but with no clinical remission. Conclusion: Motor Neuron disorders and peripheral neuropathy may occur in association with HIV infection. However, a causal relationship remains uncertain. It is noteworthy that the antiretroviral regimen may be implicated in some cases.
Resumo:
The pineal gland, a circumventricular organ, plays an integrative role in defense responses. The injury-induced suppression of the pineal gland hormone, melatonin, which is triggered by darkness, allows the mounting of innate immune responses. We have previously shown that cultured pineal glands, which express toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1), produce TNF when challenged with lipopolysaccharide (LPS). Here our aim was to evaluate which cells present in the pineal gland, astrocytes, microglia or pinealocytes produced TNF, in order to understand the interaction between pineal activity, melatonin production and immune function. Cultured pineal glands or pinealocytes were stimulated with LPS. TNF content was measured using an enzyme-linked immunosorbent assay. TLR4 and TNFR1 expression were analyzed by confocal microscopy. Microglial morphology was analyzed by immunohistochemistry. In the present study, we show that although the main cell types of the pineal gland (pinealocytes, astrocytes and microglia) express TLR4, the production of TNF induced by LPS is mediated by microglia. This effect is due to activation of the nuclear factor kappa B (NF-kB) pathway. In addition, we observed that LPS activates microglia and modulates the expression of TNFR1 in pinealocytes. As TNF has been shown to amplify and prolong inflammatory responses, its production by pineal microglia suggests a glia-pinealocyte network that regulates melatonin output. The current study demonstrates the molecular and cellular basis for understanding how melatonin synthesis is regulated during an innate immune response, thus our results reinforce the role of the pineal gland as sensor of immune status.
Resumo:
Whilst a fall in neuron numbers seems a common pattern during postnatal development, several authors have nonetheless reported an increase in neuron number, which may be associated with any one of a number of possible processes encapsulating either neurogenesis or late maturation and incomplete differentiation. Recent publications have thus added further fuel to the notion that a postnatal neurogenesis may indeed exist in sympathetic ganglia. In the light of these uncertainties surrounding the effects exerted by postnatal development on the number of superior cervical ganglion (SCG) neurons, we have used state-of-the-art design-based stereology to investigate the quantitative structure of SCG at four distinct timepoints after birth, viz., 1-3 days, 1 month, 12 months and 36 months. The main effects exerted by ageing on the SCG structure were: (i) a 77% increase in ganglion volume; (ii) stability in the total number of the whole population of SCG nerve cells (no change - either increase or decrease) during post-natal development; (iii) a higher proportion of uninucleate neurons to binucleate neurons only in newborn animals; (iv) a 130% increase in the volume of uninucleate cell bodies; and (v) the presence of BrdU positive neurons in animals at all ages. At the time of writing our results support the idea that neurogenesis takes place in the SCG of preas, albeit it warrants confirmation by further markers. We also hypothesise that a portfolio of other mechanisms: cell repair, maturation, differentiation and death may be equally intertwined and implicated in the numerical stability of SCG neurons during postnatal development. (C) 2011 ISDN. Published by Elsevier Ltd. All rights reserved.
Resumo:
ACR is supported by a research grant from CNPq.
Resumo:
Introduction. Postnatal neurogenesis in the hippocampal dentate gyrus, can be modulated by numerous determinants, such as hormones, transmitters and stress. Among the factors positively interfering with neurogenesis, the complexity of the environment appears to play a particularly striking role. Adult mice reared in an enriched environment produce more neurons and exhibit better performance in hippocampus-specific learning tasks. While the effects of complex environments on hippocampal neurogenesis are well documented, there is a lack of information on the effects of living under socio-sensory deprivation conditions. Due to the immaturity of rats and mice at birth, studies dealing with the effects of environmental enrichment on hippocampal neurogenesis were carried out in adult animals, i.e. during a period of relatively low rate of neurogenesis. The impact of environment is likely to be more dramatic during the first postnatal weeks, because at this time granule cell production is remarkably higher than at later phases of development. The aim of the present research was to clarify whether and to what extent isolated or enriched rearing conditions affect hippocampal neurogenesis during the early postnatal period, a time window characterized by a high rate of precursor proliferation and to elucidate the mechanisms underlying these effects. The experimental model chosen for this research was the guinea pig, a precocious rodent, which, at 4-5 days of age can be independent from maternal care. Experimental design. Animals were assigned to a standard (control), an isolated, or an enriched environment a few days after birth (P5-P6). On P14-P17 animals received one daily bromodeoxyuridine (BrdU) injection, to label dividing cells, and were sacrificed either on P18, to evaluate cell proliferation or on P45, to evaluate cell survival and differentiation. Methods. Brain sections were processed for BrdU immunhistochemistry, to quantify the new born and surviving cells. The phenotype of the surviving cells was examined by means of confocal microscopy and immunofluorescent double-labeling for BrdU and either a marker of neurons (NeuN) or a marker of astrocytes (GFAP). Apoptotic cell death was examined with the TUNEL method. Serial sections were processed for immunohistochemistry for i) vimentin, a marker of radial glial cells, ii) BDNF (brain-derived neurotrofic factor), a neurotrophin involved in neuron proliferation/survival, iii) PSA-NCAM (the polysialylated form of the neural cell adhesion molecule), a molecule associated with neuronal migration. Total granule cell number in the dentate gyrus was evaluated by stereological methods, in Nissl-stained sections. Results. Effects of isolation. In P18 isolated animals we found a reduced cell proliferation (-35%) compared to controls and a lower expression of BDNF. Though in absolute terms P45 isolated animals had less surviving cells than controls, they showed no differences in survival rate and phenotype percent distribution compared to controls. Evaluation of the absolute number of surviving cells of each phenotype showed that isolated animals had a reduced number of cells with neuronal phenotype than controls. Looking at the location of the new neurons, we found that while in control animals 76% of them had migrated to the granule cell layer, in isolated animals only 55% of the new neurons had reached this layer. Examination of radial glia cells of P18 and P45 animals by vimentin immunohistochemistry showed that in isolated animals radial glia cells were reduced in density and had less and shorter processes. Granule cell count revealed that isolated animals had less granule cells than controls (-32% at P18 and -42% at P45). Effects of enrichment. In P18 enriched animals there was an increase in cell proliferation (+26%) compared to controls and a higher expression of BDNF. Though in both groups there was a decline in the number of BrdU-positive cells by P45, enriched animals had more surviving cells (+63) and a higher survival rate than controls. No differences were found between control and enriched animals in phenotype percent distribution. Evaluation of the absolute number of cells of each phenotype showed that enriched animals had a larger number of cells of each phenotype than controls. Looking at the location of cells of each phenotype we found that enriched animals had more new neurons in the granule cell layer and more astrocytes and cells with undetermined phenotype in the hilus. Enriched animals had a higher expression of PSA-NCAM in the granule cell layer and hilus Vimentin immunohistochemistry showed that in enriched animals radial glia cells were more numerous and had more processes.. Granule cell count revealed that enriched animals had more granule cells than controls (+37% at P18 and +31% at P45). Discussion. Results show that isolation rearing reduces hippocampal cell proliferation but does not affect cell survival, while enriched rearing increases both cell proliferation and cell survival. Changes in the expression of BDNF are likely to contribute to he effects of environment on precursor cell proliferation. The reduction and increase in final number of granule neurons in isolated and enriched animals, respectively, are attributable to the effects of environment on cell proliferation and survival and not to changes in the differentiation program. As radial glia cells play a pivotal role in neuron guidance to the granule cell layer, the reduced number of radial glia cells in isolated animals and the increased number in enriched animals suggests that the size of radial glia population may change dynamically, in order to match changes in neuron production. The high PSA-NCAM expression in enriched animals may concur to favor the survival of the new neurons by facilitating their migration to the granule cell layer. Conclusions. By using a precocious rodent we could demonstrate that isolated/enriched rearing conditions, at a time window during which intense granule cell proliferation takes place, lead to a notable decrease/increase of total granule cell number. The time-course and magnitude of postnatal granule cell production in guinea pigs are more similar to the human and non-human primate condition than in rats and mice. Translation of current data to humans would imply that exposure of children to environments poor/rich of stimuli may have a notably large impact on dentate neurogenesis and, very likely, on hippocampus dependent memory functions.
Resumo:
Die Bildung, Aufrechterhaltung und die Funktionalität von Oligodendrozyten, den myelinisierenden Zellen des ZNS, bedarf einer präzisen Regulation von Ereignissen wie Migration, Proliferation und Differenzierung. Die Src-Kinasen spielen in vielen Signalkaskaden eine zentrale Rolle. In murinen Oligodendrozyten werden die beiden Src-Kinasen Fyn und Lyn exprimiert, diese Arbeit konzentriert sich auf die Analyse der Lyn Kinase. Es konnte die Expression von Lyn in Oligodendrozyten und Myelin in vitro und in vivo bestätigen werden, sowie die Lokalisation innerhalb und außerhalb von rafts. Je älter die Mäuse, desto weniger Lyn wird in Myelin exprimiert und desto stärker ist das verbleibende Lyn in den rafts lokalisiert. Die Aktivität von Lyn ist im Myelin 12-Tage alter Mäuse am höchsten. Synchronisation des Zellzyklus in Oli-neu Zellen zeigte eine zyklische Expression von Lyn. Transfektion aktiver und inaktiver Konstrukte machte deutlich, dass eine Lyn Aktivität die Zellausläufer Bildung, sowie die Differenzierung der Zelle, hemmt. Es konnte eine Assoziation der GluRB/C Untereinheit des AMPA Rezeptors mit Lyn nachgewiesen werden. Stimulierung des AMPA-Rezeptors mit Glutamat führte zu einer Aktivierung der Lyn Kinase und daraus resultierend, zu einer Inhibierung der Zelldifferenzierung. Welche biologische Relevanz diese Ergebnisse haben könnten, wurde in drei Hypothesen festgehalten. Zum einen könnte die Lyn Kinase den zeitlichen Übergang von Proliferation und Differenzierung in Oligodendrozyten regulieren und zwar sowohl in perinatalen oligodendroglialen Vorläuferzellen, als auch, unter besonderen Umständen, in adulten oligodendroglialen Vorläuferzellen. Des Weiteren könnte die Lyn Kinase auch eine Rolle in der Neuron-Glia-Synapsenbildung spielen. Weitere Versuche, insbesondere in vivo, müssen folgen, um diese Hypothesen zu bestätigen oder zu widerlegen.
Resumo:
Inflammation is thought to contribute to the pathogenesis of neurodegenerative diseases. Among the resident population of cells in the brain, astroglia have been suggested to actively participate in the induction and regulation of neuroinflammation by controlling the secretion of local mediators. However, the initial cellular mechanisms by which astrocytes react to pro-inflammatory molecules are still unclear. Our study identified mitochondria as highly sensitive organelles that rapidly respond to inflammatory stimuli. Time-lapse video microscopy revealed that mitochondrial morphology, dynamics and motility are drastically altered upon inflammation, resulting in perinuclear clustering of mitochondria. These mitochondrial rearrangements are accompanied by an increased formation of reactive oxygen species and a recruitment of autophagic vacuoles. 24 to 48 hours after the acute inflammatory stimulus, however, the mitochondrial network is re-established. Strikingly, the recovery of a tubular mitochondrial network is abolished in astrocytes with a defective autophagic response, indicating that activation of autophagy is required to restore mitochondrial dynamics. By employing co-cultivation assays we observed that primary cortical neurons undergo degeneration in the presence of inflamed astrocytes. However, this effect was not observed when the primary neurons were grown in conditioned medium derived from inflamed astrocytes, suggesting that a direct contact between astrocytes and neurons mediates neuronal dysfunction upon inflammation. Our results suggest that astrocytes react to inflammatory stimuli by transiently rearranging their mitochondria, a process that involves the autophagic machinery.
Resumo:
Oligodendrocytes form specialized plasma membrane extensions which spirally enwrap axons, thereby building up the myelin sheath. During myelination, oligodendrocytes produce large amounts of membrane components. Oligodendrocytes can be seen as a complex polarized cell type with two distinct membrane domains, the plasma membrane surrounding the cell body and the myelin membrane. SNARE proteins mediate the fusion of vesicular cargoes with their target membrane. We propose a model in which the major myelin protein PLP is transported by two different pathways. VAMP3 mediates the non-polarized transport of newly synthesized PLP via recycling endosomes to the plasma membrane, while transport of PLP from late endosomes/lysosomes to myelin is controlled by VAMP7. In the second part of the thesis, the role of exosome secretion in glia to axon signaling was studied. Further studies are required to clarify whether VAMP7 also controls exosome secretion. The thesis further focused on putative metabolic effects in the target neurons. Oligodendroglial exosomes showed no obvious influences on neuronal metabolic activity. Analysis of the phosphorylation levels of the neurofilament heavy subunit revealed a decrease in presence of oligodendrocytes, indicating effects of oligodendroglial exosomes on the neuronal cytoskeleton. Finally, candidates for kinases which are possibly activated upon influence of oligodendroglial exosomes and could influence neuronal survival were identified.
Resumo:
Eine wichtige Voraussetzung für das Verständnis der Spezifizierungsmechanismen unterschiedlicher Zelltypen im embryonalen Gehirn ist die detaillierte Kenntnis des neuroektodermalen Ursprungs seiner neuralen Stammzellen (Neuroblasten, NB), sowie der Morphologie und zellulären Komposition der daraus hervorgehenden Zellstammbäume (ZSBe). In der vorliegenden Arbeit wurde die Entstehung und Topologie von 21 embryonalen ZSBen im anteriorsten Gehirnteil, dem Protocerebrum, charakterisiert, mit besonderem Fokus auf solche ZSBe, die den Pilzkörper konstituieren. Pilzkörper sind prominente, paarige Neuropilzentren, die eine wichtige Rolle bei der Verarbeitung olfaktorischer Informationen, beim Lernen und bei der Gedächtnisbildung spielen. In dieser Arbeit konnte erstmalig die Embryonalentwicklung der Pilzkörper ab dem Zeitpunkt der Entstehung ihrer NBen im procephalen Neuroektoderm (pNE), bis hin zum funktionellen Gehirnzentrum in der frühen Larve auf Ebene individueller ZSBe bzw. einzelner Neurone beschrieben werden. Mittels der klonalen Di-Markierungstechnik konnte ich zeigen, dass die vier NBen der Pilzkörper (PKNBen) jeder Gehirnhemisphäre innerhalb des NE aus dem ventralen Bereich der mitotischen Domäne B (δB) hervorgehen. Ein in diesem Bereich liegendes proneurales Feld beherbergt etwa 10-12 Zellen, die alle das Potential haben sich zu PKNBen zu entwickeln. Des Weiteren zeigen diese Untersuchungen, dass die PKNBen (und weitere NBen der δB) aus benachbarten NE-Zellen hervorgehen. Dieser Befund impliziert, dass der Mechanismus der lateralen Inhibition in diesem Bereich des NE keine Rolle spielt. Weiterhin stellte sich heraus, dass jeder PKNB eine ihm eigene Position im sich entwickelnden Pilzkörperkortex besetzt und eine spezifische Kombination der Transkriptionsfaktoren Dachshund, Eyeless und Retinal homeobox exprimiert. Dadurch konnte jeder der vier PKNBen in den betreffenden frühembryonalen NB-Karten einem der ca. 105 NBen pro Gehirnhemisphäre zugeordnet werden. Die PKNBen bringen individuelle ZSBe hervor, die Pilzkörper-intrinsische γ-Neurone beinhalten, aber auch jeweils charakteristische Sets an Interneuronen, die nicht am Aufbau des Pilzkörpers beteiligt sind. Diese verschiedenen Neuronentypen entstehen in einer zeitlichen Abfolge, die für jeden PKNBen spezifisch ist. Ihre embryonalen ZSBe sind aber nicht nur durch individuelle Sets an frühgeborenen ni-Neuronen charakterisiert, sondern auch durch spezifische Unterschiede in der Anzahl ihrer γ-Neurone, welche jedoch, wie ich zeigen konnte, nicht durch Apoptose reguliert wird. Weiterhin konnte ich zeigen, dass γ-Neurone, in einer PKNB Klon-abhängigen Weise, spezifische Unterschiede in der räumlich-zeitlichen Innervation des Pedunkels, der Calyx und der Loben aufweisen. Im Weiteren wurde die Expression verschiedener molekularer Marker in diesen ZSBen charakterisiert, u.a. die Expression verschiedener Gal4-Fliegenstämme, und solcher Transkriptionsfaktoren, die eine wichtige Rolle bei der temporären Spezifizierung im VNS spielen. So werden hb, Kr, pdm1 auch in Nachkommenzellen der PKNBen exprimiert und haben möglicherweise eine Funktion bei ihrer temporären Spezifizierung. Diese Arbeit gibt auch erstmalig Einblick in die vollständige spätembryonale/frühlarvale Morphologie anderer protocerebraler Gehirnzellstammbäume aus δB und δ1. Die Beschreibungen dieser ZSBe beinhalten Angaben zu deren Zellzahl, Zelltypen, der Lage der ZSBe im Gehirn, axonalen/dendritischen Projektionsmustern sowie dem Entstehungsort des NBen.