965 resultados para Givens rotation
Resumo:
We present Roche tomograms of the K4V secondary star in the cataclysmic variable AE Aqr, reconstructed from two data sets taken 9 d apart, and measure the differential rotation of the stellar surface. The tomograms show many large, cool starspots, including a large high-latitude spot and a prominent appendage down the trailing hemisphere. We find two distinct bands of spots around 22° and 43° latitude, and estimate a spot coverage of 15.4-17 per cent on the Northern hemisphere. Assuming a solar-like differential rotation law, the differential rotation of AE Aqr was measured using two different techniques. The first method yields an equator-pole lap time of 269 d and the second yields a lap time of 262 d. This shows that the star is not fully tidally locked, as was previously assumed for CVs, but has a co-rotation latitude of ˜40°. We discuss the implications that these observations have on stellar dynamo theory, as well as the impact that spot traversal across the L1 point may have on accretion rates in CVs as well as some of their other observed properties. The entropy landscape technique was applied to determine the system parameters of AE Aqr. For the two independent data sets, we find M1 = 1.20 and 1.17 M⊙, M2 = 0.81 and 0.78 M⊙, and orbital inclinations of 50° to 51° at optimal systemic velocities of γ = -64.7 and -62.9 km s-1.
Resumo:
It has been widely thought that measuring the misalignment angle between the orbital plane of a transiting exoplanet and the spin of its host star was a good discriminator between different migration processes for hot-Jupiters. Specifically, well-aligned hot-Jupiter systems (as measured by the Rossiter-McLaughlin effect) were thought to have formed via migration through interaction with a viscous disc, while misaligned systems were thought to have undergone a more violent dynamical history. These conclusions were based on the assumption that the planet-forming disc was well-aligned with the host star. Recent work by a number of authors has challenged this assumption by proposing mechanisms that act to drive the star-disc interaction out of alignment during the pre-main-sequence phase. We have estimated the stellar rotation axis of a sample of stars which host spatially resolved debris discs. Comparison of our derived stellar rotation axis inclination angles with the geometrically measured debris-disc inclinations shows no evidence for a misalignment between the two.
Resumo:
The ground state potential energy surface for CO chemisorption across Pd{110} has been calculated using density functional theory with gradient corrections at monolayer coverage. The most stable site corresponds well with the experimental adsorption heat, and it is found that the strength of binding to sites is in the following order: pseudo-short-bridge>atop>long-bridge>hollow. Pathways and transition states for CO surface diffusion, involving a correlation between translation and orientation, are proposed and discussed. (C) 1997 American Institute of Physics.
Resumo:
Context. The magnetic activity of planet-hosting stars is an importantfactor for estimating the atmospheric stability of close-in exoplanetsand the age of their host stars. It has long been speculated thatclose-in exoplanets can influence the stellar activity level. However,testing for tidal or magnetic interaction effects in samples ofplanet-hosting stars is difficult because stellar activity hindersexoplanet detection, so that stellar samples with detected exoplanetsshow a bias toward low activity for small exoplanets.
Aims: Weaim to test whether exoplanets in close orbits influence the stellarrotation and magnetic activity of their host stars.
Methods: Wedeveloped a novel approach to test for systematic activity-enhancementsin planet-hosting stars. We use wide (several 100 AU) binary systems inwhich one of the stellar components is known to have an exoplanet, whilethe second stellar component does not have a detected planet andtherefore acts as a negative control. We use the stellar coronal X-rayemission as an observational proxy for magnetic activity and analyzeobservations performed with Chandra and XMM-Newton.
Results: Wefind that in two systems for which strong tidal interaction can beexpected the planet-hosting primary displays a much higher magneticactivity level than the planet-free secondary. In three systems forwhich weaker tidal interaction can be expected the activity levels ofthe two stellar components agree with each other.
Conclusions:Our observations indicate that the presence of Hot Jupiters may inhibitthe spin-down of host stars with thick outer convective layers. Possiblecauses for this effect include a transfer of angular momentum from theplanetary orbit to the stellar rotation through tidal interaction, ordifferences during the early evolution of the system, where the hoststar may decouple from the protoplanetary disk early because of a gapopened by the forming Hot Jupiter.
Resumo:
When a planet transits its host star, it blocks regions of the stellar surface from view; this causes a distortion of the spectral lines and a change in the line-of-sight (LOS) velocities, known as the Rossiter-McLaughlin (RM) effect. Since the LOS velocities depend, in part, on the stellar rotation, the RM waveform is sensitive to the star-planet alignment (which provides information on the system’s dynamical history). We present a new RM modelling technique that directly measures the spatially-resolved stellar spectrum behind the planet. This is done by scaling the continuum flux of the (HARPS) spectra by the transit light curve, and then subtracting the infrom the out-of-transit spectra to isolate the starlight behind the planet. This technique does not assume any shape for the intrinsic local profiles. In it, we also allow for differential stellar rotation and centre-to-limb variations in the convective blueshift. We apply this technique to HD 189733 and compare to 3D magnetohydrodynamic (MHD) simulations. We reject rigid body rotation with high confidence (>99% probability), which allows us to determine the occulted stellar latitudes and measure the stellar inclination. In turn, we determine both the sky-projected (λ ≈ −0.4 ± 0.2◦) and true 3D obliquity (ψ ≈ 7+12 −4 ◦ ). We also find good agreement with the MHD simulations, with no significant centre-to-limb variations detectable in the local profiles. Hence, this technique provides a new powerful tool that can probe stellar photospheres, differential rotation, determine 3D obliquities, and remove sky-projection biases in planet migration theories. This technique can be implemented with existing instrumentation, but will become even more powerful with the next generation of high-precision radial velocity spectrographs.
Resumo:
An energy theory is formulated for the rotational energy levels in a p-complex Rydberg state of an asymmetric top molecule of symmetry C2v. The effective Hamiltonian used consists of the usual rigid rotor Hamiltonian augmented with terms representing electronic spin and orbital angular momentum effects. Criteria for assigning symmetry species to the rotational energy levels, following Houganfs scheme that uses the full molecular group,are established and given in the form of a table. This is particularly suitable when eigenvectors are calculated on a digital computer. Also, an intensity theory for transitions to the Rydberg p-complex singlet states is presented and selection rules in terms of symmetry species of energy states are established. Finally, applications to HpO and DpO are given.
Resumo:
Jet-cooled, laser-induced phosphorescence excitation spectra (LIP) of thioacetaldehyde CH3CHS, CH3CDS, CD3CHS and CD3CDS have been observed over the region 15800 - 17300 cm"^ in a continuous pyrolysis jet. The vibronic band structure of the singlet-triplet n -* n* transition were attributed to the strong coupling of the methyl torsion and aldehydic hydrogen wagging modes . The vibronic peaks have been assigned in terms of two upper electronic state (T^) vibrations; the methyl torsion mode v^g, and the aldehydic hydrogen wagging mode v^^. The electronic origin O^a^ is unequivocally assigned as follows: CH3CHS (16294.9 cm"'' ), CH3CDS (16360.9 cm"'' ), CD3CHS (16299.7 cm"^ ), and CD3CDS (16367.2 cm"'' ). To obtain structural and dynamical information about the two electronic states, potential surfaces V(e,a) for the 6 (methyl torsion) and a (hydrogen wagging) motions were generated by ab initio quantum mechanical calculations with a 6-3 IG* basis in which the structural parameters were fully relaxed. The kinetic energy coefficients BQ(a,e) , B^(a,G) , and the cross coupling term B^(a,e) , were accurately represented as functions of the two active coordinates, a and 9. The calculations reveal that the molecule adopts an eclipsed conformation for the lower Sq electronic state (a=0°,e=0"') with a barrier height to internal rotation of 541.5 cm"^ which is to be compared to 549.8 cm"^ obtained from the microwave experiment. The conformation of the upper T^ electronic state was found to be staggered (a=24 . 68° ,e=-45. 66° ) . The saddle point in the path traced out by the aldehyde wagging motion was calculated to be 175 cm"^ above the equilibrium configuration. The corresponding maxima in the path taken by methyl torsion was found to be 322 cm'\ The small amplitude normal vibrational modes were also calculated to aid in the assignment of the spectra. Torsional-wagging energy manifolds for the two states were derived from the Hamiltonian H(a,e) which was solved variationally using an extended two dimensional Fourier expansion as a basis set. A torsionalinversion band spectrum was derived from the calculated energy levels and Franck-Condon factors, and was compared with the experimental supersonic-jet spectra. Most of the anomalies which were associated with the interpretation of the observed spectrum could be accounted for by the band profiles derived from ab initio SCF calculations. A model describing the jet spectra was derived by scaling the ab initio potential functions. The global least squares fitting generates a triplet state potential which has a minimum at (a=22.38° ,e=-41.08°) . The flatter potential in the scaled model yielded excellent agreement between the observed and calculated frequency intervals.
Resumo:
Micromorphology is used to analyze a wide range of sediments. Many microstructures have, as yet, not been analyzed. Rotation structures are the least understood of microstructures: their origin and development forms the basis of this thesis. Direction of rotational movement helps understand formative deformational and depositional processes. Twenty-eight rotation structures were analyzed through two methods of data extraction: (a) angle of grain rotation measured from Nikon NIS software, and (b) visual analyses of grain orientation, neighbouring grainstacks, lineations, and obstructions. Data indicates antithetic rotation is promoted by lubrication, accounting for 79% of counter-clockwise rotation structures while 21 % had clockwise rotation. Rotation structures are formed due to velocity gradients in sediment. Subglacial sediments are sheared due to overlying ice mass stresses. The grains in the sediment are differentially deformed. Research suggests rotation structures are formed under ductile conditions under low shear, low water content, and grain numbers inducing grain-to-grain interaction.
Resumo:
Dans la population générale plusieurs études ont démontré que les hommes ont, par comparaison aux femmes, de meilleures performances dans les tâches de rotation mentale à trois dimensions. A l’aide de l’imagerie par résonnance magnétique fonctionnelle, on a pu observer que l’exécution de cette tâche de rotation mentale s’accompagnait d’une activation du cortex pariétal chez l’homme mais du cortex prefrontal chez la femme. Ces différences entre les deux sexes suggèrent un fonctionnement neuronal différent dans l’appréhension des habiletés cognitives et comportementales. De fait, de nombreuses études ont signalé des différences notables entre les deux sexes quant à leur fonctionnement cérébral tant sur le plan émotionnel que de leurs habiletés visuo spatiales. La schizophrénie est un trouble grave et persistant de la santé mentale dont l’origine est certes multifactorielle et dont les facteurs de protection sont partiellement biologiques, psychologiques et sociales. Cette maladie requiert une approche thérapeutique à la fois clinique médicamenteuse, psychologique et sociale visant à une réintégration des malades dans leur communauté. Le pronostic de cette maladie varie en fonction du sexe ainsi que les atteintes neurologiques, neuropsychologiques et socioculturelles. Il est donc surprenant que l’exploration des mécanismes neuronaux sous-tendant les anomalies fonctionnelles cognitivo-comportementales n’ait point, en schizophrénie, adressé à date la fonctionnalité différente de l’homme et de la femme. Une étude pilote, réalisée dans mon laboratoire d’accueil, ayant suggéré chez le schizophrène, lors du traitement cognitif de stimuli émotionnels, une altération du dimorphisme sexuel observé dans la population normale, il devenait impératif de confirmer ces observations. Ce mémoire vise à vérifier par résonnance magnétique fonctionnelle l’activité neuronale cérébrale témoignant de la performance neuropsychologique de schizophrènes des deux sexes et de la comparer à celle de sujets témoins sains appareillés pour l’âge, la dominance hémisphérique et le statut familial socio-économique. A cette fin, nous avons enregistré, lors d’une tâche de rotation mentale à trois dimensions, les variables neurocognitives traduisant la validité des réponses ainsi que leur rapidité d’exécution. Simultanément, nous avons enregistré, par résonnance magnétique fonctionnelle, les sites d’activation cérébrale ainsi que leur degré d’activation corticale. Les données expérimentales, neurocognitives et cérébro-fonctionnelles, furent analysées en comparant les deux sexes d’une part et les deux états de santé d’autre part. Les résultats de ce mémoire ont fait l’objet de deux articles qui sont inclus. Les résultats obtenus confirment l’hypothèse d’un dimorphisme homme/femme dans la population générale ainsi que chez le schizophrène. Ces résultats appuient aussi l’hypothèse de l’altération, chez le schizophrène, du dimorphisme observé dans la population générale.
Resumo:
Il apparaît, suite aux résultats de plusieurs études comportementales et d’imagerie cérébrale, que les hormones gonadiques peuvent moduler le fonctionnement cérébral chez la femme. Les asymétries cérébrales fonctionnelles (ACFs), en particulier, changeraient en fonction du niveau de progestérone et d’œstrogène. On a également observé que lorsque le taux d’œstrogène est bas, les performances aux tâches impliquant l’hémisphère droit sont améliorées. Par contre, les preuves de l’action physiologique de ces deux hormones sur le cerveau ne sont pas très nombreuses. Le peu d’études d’électrophysiologie cognitive qui ont porté sur les effets du cycle menstruel ont rapporté que la composante P300 y serait sensible. Aucune n’a cependant utilisé une tâche d’habileté spatiale ou de rotation mentale qui sont connues pour impliquer davantage l’hémisphère droit. Le but de la présente étude est de documenter les changements électrocorticaux reliés aux variations hormonales lors d’une tâche de rotation mentale. Notre hypothèse de départ est que le taux d’œstrogène influencera l’activité électrocorticale et la latéralisation. Les potentiels évoqués cognitifs ont été comparés chez les mêmes femmes (n=12) lors d’une tâche de rotation mentale, répétée à deux périodes du cycle menstruel. Nos résultats démontrent que la condition de rotation induit une latéralisation de l’activité pariétale, vers l’hémisphère gauche, quand le niveau d’œstrogène est bas. Par contre, lorsque le niveau d’œstrogène est élevé, il n’y a aucune latéralisation. Par ailleurs, nous avons observé une augmentation de l’amplitude de la P300 lors du niveau oestrogénique élevé. En conclusion, les fluctuations oestrogéniques du cycle menstruel ont un impact sur la latéralisation de l’activité électrocorticale, lors d’un effort de rotation mentale.
Resumo:
Exchange-biased Ni/FeF2 films have been investigated using vector coil vibrating-sample magnetometry as a function of the cooling field strength HFC . In films with epitaxial FeF2 , a loop bifurcation develops with increasing HFC as it divides into two sub-loops shifted oppositely from zero field by the same amount. The positively biased sub-loop grows in size with HFC until only a single positively shifted loop is found. Throughout this process, the negative and positive (sub)loop shifts maintain the same discrete value. This is in sharp contrast to films with twinned FeF2 where the exchange field gradually changes with increasing HFC . The transverse magnetization shows clear correlations with the longitudinal subloops. Interestingly, over 85% of the Ni reverses its magnetization by rotation, either in one step or through two successive rotations. These results are due to the single-crystal nature of the antiferromagnetic FeF2 , which breaks down into two opposite regions of large domains.
Resumo:
On-farm experiments and pot trials were conducted on eight West African soils to explore the mechanisms governing the often reported legume rotation-induced cereal growth increases in this region. Crops comprised pearl millet (Pennisetum glaucum L.), sorghum (Sorghum bicolor Moench), maize (Zea mays L.), cowpea (Vigna unguiculata Walp.) and groundnut (Arachis hypogaea L.). In groundnut trials the observed 26 to 85% increases in total dry matter (TDM) of rotation cereals (RC) compared with continuous cereals (CC) in the 4th year appeared to be triggered by site- and crop-specific early season differences in nematode infestation (up to 6-fold lower in RC than in CC), enhanced Nmin and a 7% increase in mycorrhizal (AM) infection. In cowpea trials yield effects on millet and differences in nematode numbers, Nmin and AM were much smaller. Rhizosphere studies indicated effects on pH and acid phosphatase activity as secondary causes for the observed growth differences between RC and CC. In the study region legume-rotation effects on cereals seemed to depend on the capability of the legume to suppress nematodes and to enhance early N and P availability for the subsequent cereal.
Resumo:
The increased use of cereal/legume crop rotation has been advocated as a strategy to increase cereal yields of subsistence farmers in West Africa, and is believed to promote changes in the rhizosphere that enhance early plant growth. In this study we investigated the microbial diversity of the rhizoplane from seedlings grown in two soils previously planted to cereal or legume from experimental plots in Gaya, Niger, and Kaboli, Togo. Soils from these legume rotation and continuous cereal plots were placed into containers and sown in a growth chamber with maize (Zea mays L.), millet (Pennisetum glaucum L.), sorghum (Sorghum bicolor L. Moench.), cowpea (Vigna unguiculata L.) or groundnut (Arachis hypogaea L.). At 7 and 14 days after sowing, 16S rDNA profiles of the eubacterial and ammoniaoxidizing communities from the rhizoplane and bulk soil were generated using denaturing gradient gel electrophoresis (DGGE). Community profiles were subjected to peak fitting analyses to quantify the DNA band position and intensities, after which these data were compared using correspondence and principal components analysis. The data showed that cropping system had a highly significant effect on community structure (p <0.005), irrespective of plant species or sampling time. Continuous cereal-soil grown plants had highly similar rhizoplane communities across crop species and sites, whereas communities from the rotation soil showed greater variability and clustered with respect to plant species. Analyses of the ammonia-oxidizing communities provided no evidence of any effects of plant species or management history on ammonia oxidizers in soil from Kaboli, but there were large shifts with respect to this group of bacteria in soils from Gaya. The results of these analyses show that crop rotation can cause significant shifts in rhizosphere bacterial communities.