997 resultados para Geophysics.
Resumo:
What geophysical inversion studied includes the common mathematics physical property of inversion and the constitution and appraisal method of solution in geophysics domain, i.e. using observed physical phenomenon from the earth surface to infer space changing and physical property structure of medium within the earth. Seismic inversion is a branch of geophysical inversion. The basic purpose of seismic inversion is to utilizing seismic wave propagating law in the medium underground to infer stratum structure and space distribution of physical property according to data acquisition, processing and interpretation, and then offer the vital foundation for exploratory development. Poststack inversion is convenient and swift, its acoustic impedance inversion product can reflect reservoir interior changing rule to a certain degree, but poststack data lack abundant amplitude and travel time information included in prestack data because of multiple superimpose and weaken the sensitiveness which reflecting reservoir property. Compared with poststack seismic inversion, prestack seismic inversion has better fidelity and more adequate information. Prestack seismic inversion, including waveform inversion, not only suitable for thin strata physical property inversion, it can also inverse reservoir oil-bearing ability. Prestack seismic inversion and prestack elastic impedance inversion maintain avo information, sufficiently applying seismic gathering data with different incident angle, partial angle stack, gradient and intercept seismic data cube. Prestack inversion and poststack inversion technology were studied in this dissertation. A joint inversion method which synthesize prestack elastic wave waveform inversion, prestack elastic impedance inversion and poststack inversion was proposed by making fully use of prestack inversion multiple information and relatively fast and steady characteristic of poststack inversion. Using the proposed method to extract rock physics attribute cube with clear physical significance and reflecting reservoir characterization, such as P-wave and S-wave impedance, P-wave and S-wave velocity, velocity ratio, density, Poisson ratio and Lame’s constant. Regarding loose sand reservoir in lower member of Minghuazhen formation, 32-6 south districts in Qinhuangdao,as the research object, be aimed at the different between shallow layer loose sand and deep layer tight sand, first of all, acquire physical property parameters suitable for this kind of heavy oil pool according to experimental study, establishing initial pressure and shear wave relational model; Afterwards, performing prestack elastic wave forward and inversion research, summarizing rules under the guidance of theoretical research and numerical simulation, performing elastic impedance inversion, calculating rock physics attributes; Finally, predicting sand body distribution according to rock physics parameters, and predicting favorable oil area combine well-logging materials and made good results.
Resumo:
Prediction of Carbonate Reservoir Based on the Elastic Parameter Analysis Zhang Guangzhi (Solid Geophysics) Directed by Professor Liu Hong Abstract With the exploration and development of Puguang Oilfield, oil-gas exploration of carbonate rock in China has shown good prospects. Research on earthquake prediction methods for carbonate reservoir becomes the key of oil and gas exploration. Starting with analysis of geological characteristics of carbonate rock, prestack AVO inversion method, prestack elastic impedance inversion and parameter calculation method and seismic attribute extraction and optimization method were studied based on the analysis of rock physics in this work. First, variation characteristic and law of carbonate rock reservoir parameters were studied based on experimental data of rock physics, log data, analysis assay data, mud logging data and seismic data, so as to lay a foundation for the further reservoir identification and description. Then, the structure, type and propagation law of seismic wave field were analyzed through seismic forward modeling of the reservoir, and contact between information from log and geology data with elastic parameters, such as compressional wave and shear wave velocity and density were established, so as to provide a standard for reservoir identification and hydrocarbon detection using seismic reflection characteristics of the research area. Starting with the general concept of inverse problem, through analysis of Zoeppritz equation, three kinds of pre-stack inversion methods were derived and analyzed in detail, the AVO 3-parameter inversion based on Bayesian theory, the prestack AVO waveform inversion method and the simultaneous inversion method, based on the statistical hypothesis of inversion parameters and observation data and the Gauss distribution assumption of noise. The three methods were validated by model data and real data. Then, the elastic wave impedance inversion method of carbonate reservoir was investigated and the method of elastic parameter extraction from elastic impedance data was put forward. Based on the analysis of conventional methods of seismic attribute extraction and optimization, the time-frequency attributes and the wavelet attributes with time and amplitude feature were presented, and the prestack seismic attribute calculation method which can characterize the reservoir rock and fluid characteristic was presented. And the optimization of seismic attribute using the nonlinear KPCA method was also put forward. A series of seismic prediction technologies for carbonate reservoir were presented based on analysis of rock physics and seismic forward simulation technology. Practical application of these technologies was implemented in A oil field of Southern China and good effect has been achieved. Key words: carbonate rock; reservoir prediction; rock physics, prestack seismic inversion; seismic attribute
Resumo:
The Research of Seismic Recognition Techniques for Gas Reservoir Shang Yong_sheng(Geophysics) Directed by Yang Chang-chun Abstract Gas reservior is one of the most important nature resources. Someone forecast that the output will exceed crude oil in 2015 and become the largest energy source. Recently,more and more gas reservior are discovered as the oil field and gas filed exploration go deep into development. Although the gas proved reserves rise greatly the explorative degree of natural gas resource in our country is still very low. The potential of gas exploration is very great and our task is so hard. How to recognise and discover new gas reservoir is the first task based on the great gas reservior resources foreground. the gas reservior in different oil and gas field have its special gas generation, reservoiring, physical property conditions. However,it may have the same geophysical characters. So,it is very important to analyse, research, summarizing the geophysical characters of the gas reservior and make use of the characters to identify the gas layer effectively. This paper start with modeling,and it discuss the geophysical characters of the gas reservior response. It analyse the seismical wave characters of the gas reservoir. Furthermore, it summarize the method of using the seismica profile to identify the gas reservior directly. The paper discuss the research of extracting diffraction wave for mass diffraction wave grow at the edge of the gas reservoir at the seismic section. Making use of the technique of extracting diffraction wave to identify the gas reservior is the first experiment of the gas reservoir prediction technique. The avo technology is a new geophysical method. From the pre-stack analysis, this paper discuss the technique of using the rich information to identify the gas reservoir. Based on the case study of the Qidam basin and the Hailaer basin it discuss the method of predicating gas reservoir using pre-stack information. It include pre-stack amplitude preserve process, AVO modeling, fluid replacement technique, AVO analysis and interpretation technique. The paper summarize a gas reservoir prediction procedure focusing on the pre-stack information. The seismic wave will cause great attenuation when it pass through the gas layer and the high frequency component loss. This paper discuss the technique of extracting seismic attributes to represent the attenuation degree of seismica wave. Based on the attenuation attributes,it does the research of the gas reservor identification and prediction. At last,the paper discuss the method of calculating the azimuthal anisotropy to predict the fracture reservoir. Keyword: gas reservoir, diffraction wave, AVO, attenuation attribute,fracture prediction
Resumo:
Petroleum and natural gas is an important strategic resources. The short of the reserves will block the development of economy and threaten the safety of nation, along with the main oil fields of our country coming to the height of power and splendor of the exploitation and exploration. Therefore, it makes a great sense to inaugurate new explorative field and increase the reserves of petroleum and natural gas. Magnetic exploration is a main method of geophysics exploration. the developing observation apparatus and the perfect processing method provide wide space for magnetic exploration in these years. The method of magnetic bright spot is an application of magnetic exploration. The vertical migration of the hydrocarbon changes physical and chemical environment above the hydrocarbon reservoir, the new environment make tervalent iron translate into bivalent iron, that produce small scale magnetic anomaly, that is magnetic bright spot. The method of magnetic bright spot explores oil and gas field by the relation between the hydrocarbon and magnetic anomaly. This paper systemically research to pick-up and identify magnetic bright spot combining an oil field item, then point out advantaged area. In order to test the result, the author use the seismic information to superpose the magnetic bright spot, that prove the magnetic bright spot is reliable. then, the author complete a software to pick and identify the magnetic bright spot. The magnetic basement is very important to research forming and evolvement of the basin, especially, it is a crucial parameter of exploring residual basin in the research on pre-Cenozoic residual. This paper put forward a new method to inverse the interface of the magnetic layer on the basis of previous work, that is the method of separation of magnetic field step by step. The theory of this method is to translate the result of magnetic layer fluctuation to the result of magnetization density change, and the magnetic layer is flat, the paper choose thickness of magnetic layer as unit thickness, and define magnetic layer as a unit-thickness layer in order to convenient calculation, at the same time, define the variational magnetization density as equivalent magnetic density. Then we translate the relation between magnetic field and layer fluctuation to the relation between magnetic field and equivalent magnetic density, then, we can obtain the layer fluctuation through calculating equivalent magnetic density. Contrast to conventional parker method, model experimentation and example checkout prove this method is effective. The merit of this method is to avoid flat result in a strongly fluctuant area because of using a uniform average depth, the result of this method is closer to the fact, and this method is to inverse equivalent magnetic density, then translate equivalent magnetic density to layer fluctuation, this lays a foundation to inverse variational magnetic density in the landscape orientation and portrait.
Resumo:
Application of long-term exploration for oil and gas shows that the reservoir technology of prediction is one of the most valuable methods. Quantitative analysis of reservoir complexity is also a key technology of reservoir prediction. The current reservoir technologies of prediction are based on the linear assumption of various physical relationships. Therefore, these technologies cannot handle complex reservoirs with thin sands, high heterogeneities in lithological composition and strong varieties in petrophysical properties. Based on the above-mentioned complex reservoir, this paper conducts a series of researches. Both the comprehending and the quantitative analysis of reservoir heterogeneities have been implemented using statistical and non-linear theories of geophysics. At the beginning, the research of random media theories about reservoir heterogeneities was researched in this thesis. One-dimensional (1-D) and two-dimensional (2-D) random medium models were constructed. The autocorrelation lengths of random medium described the mean scale of heterogeneous anomaly in horizontal and deep directions, respectively. The characteristic of random medium models were analyzed. We also studied the corresponding relationship between the reservoir heterogeneities and autocorrelation lengths. Because heterogeneity of reservoir has fractal nature, we described heterogeneity of reservoir by fractal theory based on analyzing of the one-dimensional (1-D) and two-dimensional (2-D) random medium models. We simulated two-dimensional (2-D) random fluctuation medium in different parameters. From the simulated results, we can know that the main features of the two-dimensional (2-D) random medium mode. With autocorrelation lengths becoming larger, scales of heterogeneous geologic bodies in models became bigger. In addition, with the autocorrelation lengths becoming very larger, the layer characteristic of the models is very obvious. It would be difficult to identify sandstone such as gritstone, clay, dense sandstone and gas sandstone and so on in the reservoir with traditional impedance inversion. According to the obvious difference between different lithologic and petrophysical impedance, we studied multi-scale reservoir heterogeneities and developed new technologies. The distribution features of reservoir lithological and petrophysical heterogeneities along vertical and transverse directions were described quantitatively using multi-scale power spectrum and heterogeneity spectrum methods in this paper. Power spectrum (P spectrum) describes the manner of the vertical distribution of reservoir lithologic and petrophysical parameters and the large-scale and small-scale heterogeneities along vertical direction. Heterogeneity spectrum (H spectrum) describes the structure of the reservoir lithologic and petrophysical parameters mainly, that is to say, proportional composition of each lithological and petrophysical heterogeneities are calculated in this formation. The method is more reasonable to describe the degree of transverse multi-scale heterogeneities in reservoir lithological and petrophysical parameters. Using information of sonic logs in Sulige oil field, two spectral methods have been applied to the oil field, and good analytic results have been obtained. In order to contrast the former researches, the last part is the multi-scale character analysis of reservoir based on the transmission character of wave using the wavelet transform. We discussed the method applied to demarcate sequence stratigraphy and also analyzed the reservoir interlayer heterogeneity.
Resumo:
Groundwater basin is important for water supply in northern China. The paper took the Jingsheng Basin in Lingshi County, Shanxi Province as a case to study the basin groundwater system by numerical modeling. The hydrogeological characteristics were analysed basing on the field investigation, and a three-dimensional groundwater flow model was established to describe the groundwater flow system in the Jingsheng groundwater basin. The boundary of the model was determined by using geophysics and GIS data, and the lumped parameter model of runoff was used to depict the transform between the surface water and groundwater, and the groundwater dating data was used to calibrate the model. All these methods were used to improve the model. The Software Visual MODFLOW 2000 was applied to set up the numerical groundwater flow model. The groundwater flow pattern in the average year, the high-water year and the low-water year were simulated respectively by the model. Some new cognition to the groundwater movement in Jingsheng Basin was obtained in the paper. The difficult problems were resolved when using the conventional and theoretical analysis to forecast and appraise the exploitation of the groundwater, and supplies the instructional technology base for the reasonable exploitation and optimization collocation. The numerical model will improve evaluation of the basin groundwater resources.
Resumo:
In exploration geophysicsvelocity analysis and migration methods except reverse time migration are based on ray theory or one-way wave-equation. So multiples are regarded as noise and required to be attenuated. It is very important to attenuate multiples for structure imaging, amplitude preserving migration. So it is an interesting research in theory and application about how to predict and attenuate internal multiples effectively. There are two methods based on wave-equation to predict internal multiples for pre-stack data. One is common focus point method. Another is inverse scattering series method. After comparison of the two methods, we found that there are four problems in common focus point method: 1. dependence of velocity model; 2. only internal multiples related to a layer can be predicted every time; 3. computing procedure is complex; 4. it is difficult to apply it in complex media. In order to overcome these problems, we adopt inverse scattering series method. However, inverse scattering series method also has some problems: 1. computing cost is high; 2. it is difficult to predict internal multiples in the far offset; 3. it is not able to predict internal multiples in complex media. Among those problems, high computing cost is the biggest barrier in field seismic processing. So I present 1D and 1.5D improved algorithms for reducing computing time. In addition, I proposed a new algorithm to solve the problem which exists in subtraction, especially for surface related to multiples. The creative results of my research are following: 1. derived an improved inverse scattering series prediction algorithm for 1D. The algorithm has very high computing efficiency. It is faster than old algorithm about twelve times in theory and faster about eighty times for lower spatial complexity in practice; 2. derived an improved inverse scattering series prediction algorithm for 1.5D. The new algorithm changes the computing domain from pseudo-depth wavenumber domain to TX domain for predicting multiples. The improved algorithm demonstrated that the approach has some merits such as higher computing efficiency, feasibility to many kinds of geometries, lower predictive noise and independence to wavelet; 3. proposed a new subtraction algorithm. The new subtraction algorithm is not used to overcome nonorthogonality, but utilize the nonorthogonality's distribution in TX domain to estimate the true wavelet with filtering method. The method has excellent effectiveness in model testing. Improved 1D and 1.5D inverse scattering series algorithms can predict internal multiples. After filtering and subtracting among seismic traces in a window time, internal multiples can be attenuated in some degree. The proposed 1D and 1.5D algorithms have demonstrated that they are effective to the numerical and field data. In addition, the new subtraction algorithm is effective to the complex theoretic models.
Resumo:
In the prediction of complex reservoir with high heterogeneities in lithologic and petrophysical properties, because of inexact data (e.g., information-overlapping, information-incomplete, and noise-contaminated) and ambiguous physical relationship, inversion results suffer from non-uniqueness, instability and uncertainty. Thus, the reservoir prediction technologies based on the linear assumptions are unsuited for these complex areas. Based on the limitations of conventional technologies, the thesis conducts a series of researches on various kernel problems such as inversions from band-limited seismic data, inversion resolution, inversion stability, and ambiguous physical relationship. The thesis combines deterministic, statistical and nonlinear theories of geophysics, and integrates geological information, rock physics, well data and seismic data to predict lithologic and petrophysical parameters. The joint inversion technology is suited for the areas with complex depositional environment and complex rock-physical relationship. Combining nonlinear multistage Robinson seismic convolution model with unconventional Caianiello neural network, the thesis implements the unification of the deterministic and statistical inversion. Through Robinson seismic convolution model and nonlinear self-affine transform, the deterministic inversion is implemented by establishing a deterministic relationship between seismic impedance and seismic responses. So, this can ensure inversion reliability. Furthermore, through multistage seismic wavelet (MSW)/seismic inverse wavelet (MSIW) and Caianiello neural network, the statistical inversion is implemented by establishing a statistical relationship between seismic impedance and seismic responses. Thus, this can ensure the anti-noise ability. In this thesis, direct and indirect inversion modes are alternately used to estimate and revise the impedance value. Direct inversion result is used as the initial value of indirect inversion and finally high-resolution impedance profile is achieved by indirect inversion. This largely enhances inversion precision. In the thesis, a nonlinear rock physics convolution model is adopted to establish a relationship between impedance and porosity/clay-content. Through multistage decomposition and bidirectional edge wavelet detection, it can depict more complex rock physical relationship. Moreover, it uses the Caianiello neural network to implement the combination of deterministic inversion, statistical inversion and nonlinear theory. Last, by combined applications of direct inversion based on vertical edge detection wavelet and indirect inversion based on lateral edge detection wavelet, it implements the integrative application of geological information, well data and seismic impedance for estimation of high-resolution petrophysical parameters (porosity/clay-content). These inversion results can be used to reservoir prediction and characterization. Multi-well constrains and separate-frequency inversion modes are adopted in the thesis. The analyses of these sections of lithologic and petrophysical properties show that the low-frequency sections reflect the macro structure of the strata, while the middle/high-frequency sections reflect the detailed structure of the strata. Therefore, the high-resolution sections can be used to recognize the boundary of sand body and to predict the hydrocarbon zones.
Resumo:
The continent of eastern China, especially the North China Craton (NCC), has endured intensive tectonic renovation during Mesozoic and Cenozoic, with the presence of widespread magmatism, high heat flow and development of large sedimentary basins and mountain ranges. The cratonic lithosphere of the region has been destroyed remarkably, which is characterized by not only a significant reduction in thickness but also complex modifications in physical and chemical properties of the lithosphere. As for the tectonic regime controlling the evolution of the NCC, various models have been put forward, including the impingement of mantle plumes (“mushroom cloud” model), the collision of south China block and north China block, the subduction of the Pacific plate, etc. Lithosphere delamination and thermal erosion were proposed as the two end-member mechanisms of the lithospheric thinning. However, given the paucity of the data, deep structural evidence is currently still scarce for distinguishing and testifying these models. To better understand the deep structure of the NCC, from 2000 to the present, temporary seismic array observations have been conducted in the NCC by the Seismological Laboratory of the Institute of the Geology and Geophysics, Chinese Academy of Sciences under the North China Interior Structure Project (NCISP). Many arrays extend from the North China Craton and the off-craton regions, and traverse a lot of main tectonic boundaries. A total of more than 300 broadband seismic stations have been deployed along several profiles that traversed the major tectonic units within the craton’s interior, at the boundary areas and in the neighboring off-craton regions. These stations recorded abundant high-quality data, which provides an unprecedented opportunity for us to unravel the deep structural features of the NCC using seismological methods. Among all the seismological methods, the surface wave method appears to be an efficient and widely adopted technique in studying the crustal and upper mantle structures. In particular, it can provide the absolute values of S-wave velocity that are difficult to obtain with other methods. Benefiting from the deployment of dense seismic arrays, progresses have been made in improving the spatial resolution of surface wave imaging, which makes it possible to resolve the fine-scale velocity structures of the crust and upper mantle based on surface wave analysis. Meanwhile, the differences in the S-wave velocities derived from Rayleigh and Love wave data can provide information on the radial anisotropy beneath the seismic arrays. In this thesis, using the NCISP-III broadband data and based on phase velocity dispersion analysis and inversion of fundamental mode Rayleigh and Love waves, I investigated the lateral variations in the S-wave velocity structure of the crust and uppermost mantle beneath the Yanshan Belt and adjacent regions at the northeastern boundary of the NCC. Based on the constructed structural images, I discussed possible deep processes of the craton destruction in the study region.
Resumo:
Scale matching method means adjusting information with different scale to the same level. This thesis focuses on scale unification of information with different frequency bandwidth. Well-seismic cooperate inversion is an important component of reservoir geophysics; multiple prediction & subtraction is a development of multiple attenuation in recent years. The common ground of these two methods is that they both related to different frequency bandwidth unification. Well log、cross-hole seismic、VSP、3D seismic and geological information have different spatial resolution, we can decrease multi-solution of reservoir inversion and enhance the vertical and lateral resolution of the geological object by integrate those information together; Compare the predicted multiple generated by SRME with the real multiple, we find the predicted multiple convolutes at least one wavelet more, which brings frequency bandwidth difference between them. So the subtraction method also relates to multi-scale information unification. This thesis gives a method of well constrained seismic high resolution processing basing on auto gain control modulation. It uses base function method which utilizes original well-seismic match result as initial condition and processed seismic trace as initial model to extrapolate the high frequency information of the well logs to the seismic profiles. In this way we can broaden the bandwidth of the seismic and make the high frequency gain geological meaning. In this thesis we introduce the revised base function method to adaptive subtraction and verify the validity of the method using models. Key words: high frequency reconstruction, scale matching, base function, multiple, SRME prediction & subtraction
Resumo:
Located in the Central and West African, Chad, which is not well geological explored, is characterized by Mesozoic- Cenozoic intra-continental rift basins. The boreholes exposed that, during Mesozoic-Cenozoic times, volcanic activities were intense in these basins, but study on volcanic rocks is very weak, especially on those embedded in rift basins, and so far systematic and detailed work has still no carried out. Based on the project of China National Oil and Gas Exploration and Development Corporation, “The analysis of reservoir condition and the evaluation of exploration targets of seven basins in block H in Chad”, and the cooperative project between Institute of Geology and Geophysics, CAS and CNPC International (Chad) Co. Ltd., “Chronology and geochemistry studies on Mesozoic-Cenozoic volcanic rocks from southwestern Chad Basins”, systematic geochronology, geochemistry and Sr-Nd-Pb isotopic geochemistry studies on volcanic rocks from southwestern Chad basins have been done in the thesis for the first time. Detailed geochronological study using whole-rock K-Ar and Ar-Ar methods shows the mainly eruption ages of these volcanic rocks are Late Cretaceous- Paleogene. Volcanic rocks in the well Nere-1 and Figuier-1 from Doba basin are products of the Late Cretaceous which majority of the K-Ar (Ar-Ar) ages fall in the interval 95-75 Ma, whereas volcanic rocks in the well Ronier-1 from Bongor Basin and the Well Acacia-1 from Lake Chad Basin formed in the Paleogene which the ages concentrated in 66-52Ma. Two main periods of volcanic activity can be recognized in the study area, namely, the Late Cretaceous period and the Paleogene period. Volcanic activities have a general trend of south to north migration, but this may be only a local expression, and farther future studies should be carried on. Petrology study exhibits these volcanic rocks from southwestern Chad basins are mainly tholeiitic basalt. Major- and trace elements as well as Sr-Nd-Pb isotopic geochemistry studies show that the late Cretaceous and the Paleogene basalts have a definitely genetic relationship, and magmas which the basalts in southwestern Chad basins derived from were produced by fractional crystallization of olivine and clinopyroxene and had not do suffered from crustal contamination. These basalts are prominently enriched light rare earth elements (LREE), large-ion lithophile elements (LILE) and high field strength elements (HFSE) and depleted compatible elements. They have positive Ba, Pb, Sr, Nb, Ta, Zr, Hf anomalies and negative Th, U, P,Y anomalies. It is possible that the basalts from southwestern Chad basins mainly formed by mixing of depleted mantle (DM) and enriched mantle (EMⅡ) sources. The late Cretaceous basalts have higher (87Sr/86Sr)i ratios than the Paleogene basalts’, whereas have lower (143Nd/144Nd)i ratios than the latter, showing a significant temporal evolution. The mantle sources of the Late Cretaceous basalts may have more enriched mantle(EMⅡ) compositions, whereas those of the Paleogene basalts are relatively more asthenospheric mantle (DM) components. The mantle components with temporal change observed in basalts from Chad basins were probably correlated with the asthenospheric mantle upwelling and lithospheric thinning in Central and Western Africa since Mesozoic. Mesozoic- Cenozoic Volcanism in Chad basins probably is a product of intra- plate extensional stress regime, corresponded to the tectonic setting of the whole West and Central African during Cretaceous. Volcanism is closely correlated with rifting. As time passed from early period to late, the basaltic magma of Chad basins, characterized with shallower genetic depth, higher density and smaller viscosity, probably indicates the gradual strengthening evolution of the rifting. In the initial rife stage, volcanic activities are absent in the study area. Volcanic activities are basiccally corresponded with the strong extensional period of Chad basins, and the eruption of basalts was slightly lagged behind the extensional period. In the post-rift stage (30-0Ma), these basins shifted to the thermal sag phase, volcanic activities in the study area significantly decreased and then terminated.
Resumo:
Central Xiemisitai is located on the northwest edge of the Junggar Basin, bounded on the north by Sawuer Mountain, and southward Junggar Basin. Geotectonically, it is within the Chengjisi-Ximisitai-Santanghu island arc of Late Paleozoic, between Siberian and Junggar plates. The volcanics in this area mainly consist of acidic volcanic lava, rock assemblage of esite, dacite, and rhyolite, and the transitional phase is comparatively developed. Besides, Si2O of volcanics here covers a large range of 53.91-79.28t %, K2O of 1.71-6.94t%, and Na2O of 2.29-5.45t%, which is a set of metaluminous- peraluminous high K calc-alkaline to calc alkaline mid-acidic volcanic series. In addition, the volcanics are potassic to high-potassic assemblage, with slight shoshonite in. The REE curve of volcanics in central Xiemisitai is rightward and smooth, inclining to LREE enrichment, which reveals the characteristics of island-arc volcanics. Through the lithology changing from neutral to acidic, the negative anomaly of Eu is increasing. The volcanics here deplete HFSE such as Nb, Ti, P, etc., but relatively rich in LILE like Rb, K, Th, etc., possessing geochemistry characteristics of arc volcanics, which means that the lava source region is watery, under the meta-somatic contamination of subducted components. Moreover, high Ba and Sr show volcanics in epicontinental arc environment, and their contemporaneous granitoid rocks are also marked with the characteristics of volcanic arc granite. In central Xiemisitai, the volcanics zircon age of volcanic rhyolite is 422.5Ma± 1.9Ma, mid-late Silurian. Only one sample zircon has been measured for the present, not very convincing, so volcanics here might not come from Devonian volcanism. Consequently, further confirming the volcanic age will play a key role in the research on the beginning of volcanism in Xiemisitai area and even North Xinjiang. This area includes three copper mineralization types: a) from andesite fracture; b) from rhyolite fracture broken zone, with the copper mineralization distributed by veins along the fissure; and c) from quartz veins. The mineralization of earth surface in S24 ore spot is intensive, and the primary geochemistry reconnaissance anomaly is fairly good. According to display data, the maximum content of Cu is as high as 0.9% and as low as 0.05%. Also, ore-control fracture structure is having a considerable scale in the strike of fracture both horizontally and vertically downwards, and the result of the geophysics stratagem EH-4 system reveals obvious low-resistivity anomaly. As a result, we believe that the S24 plot is expected to be a volcanic copper deposit target area.
Resumo:
This report is a conclusion of the major research outcome during my post-doctoral residence of research and work. Its content covers the researches of the deep thermal characteristic and dynamics evolution beneath the northern margin basin of South China Sea. In this report, the each other action and effect between lithosphere ad mantle convection were regarded by the combine of deep and shallow study, subdivision from whole to part, and pay equal attention to determine the nature and fixed quantity. The investigative method we used in this report is geothermal and gravity methods. By the help of geological model and geophysics modeling, we calculated lithosphere thermal structure, rheology structure and mantle convection. Firstly, the report introduces concisely the purpose and the previous achievement to this research. Then, it analyzed the characteristic of heat flow on South China Sea. The structure of deep temperature and thermal has been calculated in some models of heat generation and conduction. The rock rheology structure also was computed by the relationship between temperature and viscosity. All these calculations were finished under the guidelines of combine with geology and geophysics. Meanwhile, the fields both deep mantle convection and small scale upper mantle convection are computed. Beside, the density and temperature disorder resulted by mantle convection were also computed with the convection field. After these, the report bring the contribution of local field of mantle convection, thermal construct and effective viscosity beneath the northern margin basin of South China Sea. And, base on the tectonic background and evolution feature, this report discussion the evolution mechanism of south China Sea and its northern margin basin. The end of this report, the main conclusion of this research was summarized and brings out.
Resumo:
Since C.L. Hearn presented the concept of flow unit in 1984, its generation mechanisms and controlling factors have been studied in many aspects using different methods by researchers. There are some basic methods to do the research, and there are several concepts and classification standards about flow unit. Based on previous achievements and using methodologies from sedimentary geology, geophysics, seismic stratigraphy, and reservoir engineering, the author systemically studies the factors controlling flow unit, puts forward a series of methods for recognition, classification and evaluation of flow unit. The results obtained in this paper have important significance not only for understanding the flow unit, but also for revealing the distribution of remaining oil. As a case, this paper deals with the reservoir rocks in Guantao Group of Gudong Oilfield. Zhanhua Sag, Jiyang Depression in Bohaiwan Basin. Based on the study of stratigraphic, depositional and structural characteristics, the author establishes reservoir geological models, reveals the geological characteristics of oil-bearing reservoir of fluvial facies, points out the factors controlling flow unit and geological parameters for classification of flow unit. and summarizes methods and technologies for flow unit study when geological, well-logging and mathematical methods are used. It is the first attempt in literatures to evaluate reservoir by well-logging data constrained by geological conditions, then a well-logging evaluation model can be built. This kind of model is more precise than ever for calculating physical parameters in flow unit. In a well bore, there are six methods to recognize a flow unit. Among them, the activity function and intra-layer difference methods are the most effective. Along a section, the composition type of flow unit can be located according amplitude and impedance on seismic section. Slice method and other methods are used to distinguish flow unit. In order to reveal the distribution laws of flow unit in space, the author create a new method, named combination and composition of flow unit. Based on microscopic pore structure research, the classification methods of flow unit are developed. There are three types of flow unit in the reservoir of fluvial facies. They have their own lithology, petrophysics and pore structure character. Using judgement method, standard functions are built to determine the class of flow unit of fluvial facies. Combining reservoir engineering methods, the distribution laws of remaining oil in different types, or in different part of a flow unit are studied. It is evident that the remaining oil is controlled by the type of flow unit. The author reveals the relationship between flow unit and remaining oil distribution, builds the flowing models, predicts the variation of reservoir parameters in space, put forward different methods developing remaining oil in different flow unit. Especially, based on the results obtained in this paper, some suggestions for the adjustment of the developing flow units have been applied in Districts No.4 and No.7, and good results have been yielded. So, the results of this paper can guide oil field development. They are useful and significant for developing the remaining oil and enhancing the oil recovery efficiency.
Resumo:
The Study on rheology of the lithosphere and the environments of the seismogenic layer is currently the basic project of the international earthquake research. Yunnan is the ideal place for studying this project. Through the multi-disciplinary comprehensive study of petrology, geophysics, seismo-geology, rock mechanics, etc., the depth-strength profiles of the lithosphere have been firstly constructed, and the seismogenic layer and its geophysical and tectonic environments in Yunnan have been systematically expounded in this paper. The related results achieved are of the important significances for further understanding the mechanism of strong earthquake generation, dividing the potential foci and exposing recent geodynamical processes in Yunnan. Through the comprehensive contrast of the metamorphic rocks in early and middle Proterozoic outcropping on the surface, DSS data and experimental data of rock seismic velocity under high temperature and high pressure, the petrological structure of the crust and upper mantle has been studied on Yunnan: the upper, middle and lower crust is composed of the metamorphic rocks of greenschist, amphibolite and granulite facies, respectively or granitoids, diorites and gabbros, respectively, and the upper mantle composed of the peridotites. Through the contrast studies of the heat flow and epicenters of the strong earthquakes, the distribution of the geotemperature and the data of focal depth, the relationship of between seismicity and geothermal structure of the lithosphere in Yunnan has been studied: the strong earthquakes with magnitude M ≥ 6.0 mainly take place at the geothermal gradient zone, and the seismic foci densely distribute between 200~500 ℃ isogeotherms. On the basis of studies of the rock properties and constituents of the crust and upper mantle and geothermal structure of the lithosphere, the structure of the rheological stratification of the lithosphere has been studied, and the corresponding depth-strength profiles have been constructed in Yunnan. The lithosphere in majority region of Yunnan has the structure of the rheological stratification, i.e. the brittle regime in the upper crust or upper part of the upper crust, ductile regime in the middle crust or lower part of the upper crust to middle crust, ductile regime in the lower crust and ductile regime in the subcrustal lithosphere. The rheological stratification has the quite marked lateral variations in the various tectonic units. The distributions of the seismogenic layer have been determined by using the high accurate data of focal depth. Through the contrast of the petrological structure, the structure of seismic velocity, electric structure, geotemperature structure, and rheological structure and the study of the focal mechanism in the seismogenic layer, the geophysical environments of the seismogenic layer in Yunnan have been studied. The seismogenic layer in Yunnan is located at the depths of 3 ~ 20 km; the rocks in the seismogenic layer are composed of the metamorphic rocks of greenschist to amphibolite facies (or granites to diorites); the seismogenic layer and its internal focal regions of strong earthquakes have the structure of medium properties with the relatively high seismic velocity, high density and high resistivity; there exists the intracrustal low seismic velocity and high conductivity layer bellow the seismogenic layer, the geotemperature is generally 100~500 ℃ in the depth range in which the seismogenic layer is located. The horizontal stress field predominates in the seismogenic layer, the seismogenic layer corresponds to the brittle regime of the upper crust or brittle regime of the upper crust to semibrittle regime of the middle crust. The formation of the seismogenic layer, preparedness and occurrence of the strong earthquakes is the result of the comprehensive actions of the source fault, rock constituent, structure of the medium properties, distribution of the geotemperature, rheological structure of the seismogenic layer and its external environments. Through the study of the structure, active nature, slip rate, segmentation of the active faults, and seismogenic faults, the tectonic environments of the seismogenic layer in Yunnan have been studied. The source faults of the seismogenic layer in Yunnan are mainly A-type ones and embody mainly the strike slip faults with high dip angle. the source faults are the right-lateral strike slip ones with NW-NNW trend and left-lateral strike slip ones with NE-NEE trend in Southwestern Yunnan, the right-lateral strike slip ones with NNW trend and left-lateral strike slip ones with NNE trend (partially normal ones) in Northwestern Yunnan, the right-lateral strike slip ones with NWW trend in Central Yunnan and left-lateral strike slip ones with NW-NNW trend in Eastern Yunnan. Taking Lijiang earthquake with Ms = 7.0 for example. The generating environments of the strong earthquake and seismogenic mechanical mechanism have been studied: the source region of the strong earthquake has the media structure with the relatively high seismic velocity and high resistivity, there exists the intracrustal low velocity and high conductivity layer bellow it and the strong earthquakes occur near the transitional zone of the crustal brittle to ductile deformation. These characteristics are the generality of the generating environments of strong earthquakes. However, the specific seismogenic tectonic environments and action of the stress field of the seismic source in the various regions, correspondingly constrains the dislocation and rupture mechanical mechanism of source fault of strong earthquake.