979 resultados para Geometry, Non-euclidean
Resumo:
It has been argued that a single two-dimensional visualization plot may not be sufficient to capture all of the interesting aspects of complex data sets, and therefore a hierarchical visualization system is desirable. In this paper we extend an existing locally linear hierarchical visualization system PhiVis ¸iteBishop98a in several directions: bf(1) We allow for em non-linear projection manifolds. The basic building block is the Generative Topographic Mapping (GTM). bf(2) We introduce a general formulation of hierarchical probabilistic models consisting of local probabilistic models organized in a hierarchical tree. General training equations are derived, regardless of the position of the model in the tree. bf(3) Using tools from differential geometry we derive expressions for local directional curvatures of the projection manifold. Like PhiVis, our system is statistically principled and is built interactively in a top-down fashion using the EM algorithm. It enables the user to interactively highlight those data in the ancestor visualization plots which are captured by a child model. We also incorporate into our system a hierarchical, locally selective representation of magnification factors and directional curvatures of the projection manifolds. Such information is important for further refinement of the hierarchical visualization plot, as well as for controlling the amount of regularization imposed on the local models. We demonstrate the principle of the approach on a toy data set and apply our system to two more complex 12- and 18-dimensional data sets.
Resumo:
It has been argued that a single two-dimensional visualization plot may not be sufficient to capture all of the interesting aspects of complex data sets, and therefore a hierarchical visualization system is desirable. In this paper we extend an existing locally linear hierarchical visualization system PhiVis (Bishop98a) in several directions: 1. We allow for em non-linear projection manifolds. The basic building block is the Generative Topographic Mapping. 2. We introduce a general formulation of hierarchical probabilistic models consisting of local probabilistic models organized in a hierarchical tree. General training equations are derived, regardless of the position of the model in the tree. 3. Using tools from differential geometry we derive expressions for local directionalcurvatures of the projection manifold. Like PhiVis, our system is statistically principled and is built interactively in a top-down fashion using the EM algorithm. It enables the user to interactively highlight those data in the parent visualization plot which are captured by a child model.We also incorporate into our system a hierarchical, locally selective representation of magnification factors and directional curvatures of the projection manifolds. Such information is important for further refinement of the hierarchical visualization plot, as well as for controlling the amount of regularization imposed on the local models. We demonstrate the principle of the approach on a toy data set andapply our system to two more complex 12- and 19-dimensional data sets.
Resumo:
The main objective of the work presented in this thesis is to investigate the two sides of the flute, the face and the heel of a twist drill. The flute face was designed to yield straight diametral lips which could be extended to eliminate the chisel edge, and consequently a single cutting edge will be obtained. Since drill rigidity and space for chip conveyance have to be a compromise a theoretical expression is deduced which enables optimum chip disposal capacity to be described in terms of drill parameters. This expression is used to describe the flute heel side. Another main objective is to study the effect on drill performance of changing the conventional drill flute. Drills were manufactured according to the new flute design. Tests were run in order to compare the performance of a conventional flute drill and non conventional design put forward. The results showed that 50% reduction in thrust force and approximately 18% reduction in torque were attained for the new design. The flank wear was measured at the outer corner and found to be less for the new design drill than for the conventional one in the majority of cases. Hole quality, roundness, size and roughness were also considered as a further aspect of drill performance. Improvement in hole quality is shown to arise under certain cutting conditions. Accordingly it might be possible to use a hole which is produced in one pass of the new drill which previously would have required a drilled and reamed hole. A subsidiary objective is to design the form milling cutter that should be employed for milling the foregoing special flute from drill blank allowing for the interference effect. A mathematical analysis in conjunction with computing technique and computers is used. To control the grinding parameter, a prototype drill grinder was designed and built upon the framework of an existing cincinnati cutter grinder. The design and build of the new grinder is based on a computer aided drill point geometry analysis. In addition to the conical grinding concept, the new grinder is also used to produce spherical point utilizing a computer aided drill point geometry analysis.
Resumo:
This thesis applies a hierarchical latent trait model system to a large quantity of data. The motivation for it was lack of viable approaches to analyse High Throughput Screening datasets which maybe include thousands of data points with high dimensions. High Throughput Screening (HTS) is an important tool in the pharmaceutical industry for discovering leads which can be optimised and further developed into candidate drugs. Since the development of new robotic technologies, the ability to test the activities of compounds has considerably increased in recent years. Traditional methods, looking at tables and graphical plots for analysing relationships between measured activities and the structure of compounds, have not been feasible when facing a large HTS dataset. Instead, data visualisation provides a method for analysing such large datasets, especially with high dimensions. So far, a few visualisation techniques for drug design have been developed, but most of them just cope with several properties of compounds at one time. We believe that a latent variable model (LTM) with a non-linear mapping from the latent space to the data space is a preferred choice for visualising a complex high-dimensional data set. As a type of latent variable model, the latent trait model can deal with either continuous data or discrete data, which makes it particularly useful in this domain. In addition, with the aid of differential geometry, we can imagine the distribution of data from magnification factor and curvature plots. Rather than obtaining the useful information just from a single plot, a hierarchical LTM arranges a set of LTMs and their corresponding plots in a tree structure. We model the whole data set with a LTM at the top level, which is broken down into clusters at deeper levels of t.he hierarchy. In this manner, the refined visualisation plots can be displayed in deeper levels and sub-clusters may be found. Hierarchy of LTMs is trained using expectation-maximisation (EM) algorithm to maximise its likelihood with respect to the data sample. Training proceeds interactively in a recursive fashion (top-down). The user subjectively identifies interesting regions on the visualisation plot that they would like to model in a greater detail. At each stage of hierarchical LTM construction, the EM algorithm alternates between the E- and M-step. Another problem that can occur when visualising a large data set is that there may be significant overlaps of data clusters. It is very difficult for the user to judge where centres of regions of interest should be put. We address this problem by employing the minimum message length technique, which can help the user to decide the optimal structure of the model. In this thesis we also demonstrate the applicability of the hierarchy of latent trait models in the field of document data mining.
Resumo:
We study the dynamics of a growing crystalline facet where the growth mechanism is controlled by the geometry of the local curvature. A continuum model, in (2+1) dimensions, is developed in analogy with the Kardar-Parisi-Zhang (KPZ) model is considered for the purpose. Following standard coarse graining procedures, it is shown that in the large time, long distance limit, the continuum model predicts a curvature independent KPZ phase, thereby suppressing all explicit effects of curvature and local pinning in the system, in the "perturbative" limit. A direct numerical integration of this growth equation, in 1+1 dimensions, supports this observation below a critical parametric range, above which generic instabilities, in the form of isolated pillared structures lead to deviations from standard scaling behaviour. Possibilities of controlling this instability by introducing statistically "irrelevant" (in the sense of renormalisation groups) higher ordered nonlinearities have also been discussed.
Resumo:
* A preliminary version of this paper was presented at XI Encuentros de Geometr´ia Computacional, Santander, Spain, June 2005.
Resumo:
In SNAP (Surface nanoscale axial photonics) resonators propagation of a slow whispering gallery mode along an optical fiber is controlled by nanoscale variation of the effective radius of the fiber [1]. Similar behavior can be realized in so - called nanobump microresonators in which the introduced variation of the effective radius is asymmetric, i.e. depends on the axial coordinate [2]. The possibilities of realization of such structures “on the fly” in an optical fiber by applying external electrostatic fields to it is discussed in this work. It is shown that local variations in effective radius of the fiber and in its refractive index caused by external electric fields can be large enough to observe SNAP structure - like behavior in an originally flat optical fiber. Theoretical estimations of the introduced refractive index and effective radius changes and results of finite element calculations are presented. Various effects are taken into account: electromechanical (piezoelectricity and electrostriction), electro-optical (Pockels and Kerr effects) and elasto-optical effect. Different initial fibre cross-sections are studied. The aspects of use of linear isotropic (such as silica) and non-linear anisotropic (such as lithium niobate) materials of the fiber are discussed. REFERENCES [1] M. Sumetsky, J. M. Fini, Opt. Exp. 19, 26470 (2011). [2] L. A. Kochkurov, M. Sumetsky, Opt. Lett. 40, 1430 (2015).
Resumo:
This work explores the use of statistical methods in describing and estimating camera poses, as well as the information feedback loop between camera pose and object detection. Surging development in robotics and computer vision has pushed the need for algorithms that infer, understand, and utilize information about the position and orientation of the sensor platforms when observing and/or interacting with their environment.
The first contribution of this thesis is the development of a set of statistical tools for representing and estimating the uncertainty in object poses. A distribution for representing the joint uncertainty over multiple object positions and orientations is described, called the mirrored normal-Bingham distribution. This distribution generalizes both the normal distribution in Euclidean space, and the Bingham distribution on the unit hypersphere. It is shown to inherit many of the convenient properties of these special cases: it is the maximum-entropy distribution with fixed second moment, and there is a generalized Laplace approximation whose result is the mirrored normal-Bingham distribution. This distribution and approximation method are demonstrated by deriving the analytical approximation to the wrapped-normal distribution. Further, it is shown how these tools can be used to represent the uncertainty in the result of a bundle adjustment problem.
Another application of these methods is illustrated as part of a novel camera pose estimation algorithm based on object detections. The autocalibration task is formulated as a bundle adjustment problem using prior distributions over the 3D points to enforce the objects' structure and their relationship with the scene geometry. This framework is very flexible and enables the use of off-the-shelf computational tools to solve specialized autocalibration problems. Its performance is evaluated using a pedestrian detector to provide head and foot location observations, and it proves much faster and potentially more accurate than existing methods.
Finally, the information feedback loop between object detection and camera pose estimation is closed by utilizing camera pose information to improve object detection in scenarios with significant perspective warping. Methods are presented that allow the inverse perspective mapping traditionally applied to images to be applied instead to features computed from those images. For the special case of HOG-like features, which are used by many modern object detection systems, these methods are shown to provide substantial performance benefits over unadapted detectors while achieving real-time frame rates, orders of magnitude faster than comparable image warping methods.
The statistical tools and algorithms presented here are especially promising for mobile cameras, providing the ability to autocalibrate and adapt to the camera pose in real time. In addition, these methods have wide-ranging potential applications in diverse areas of computer vision, robotics, and imaging.
Resumo:
Let $M$ be a compact, oriented, even dimensional Riemannian manifold and let $S$ be a Clifford bundle over $M$ with Dirac operator $D$. Then \[ \textsc{Atiyah Singer: } \quad \text{Ind } \mathsf{D}= \int_M \hat{\mathcal{A}}(TM)\wedge \text{ch}(\mathcal{V}) \] where $\mathcal{V} =\text{Hom}_{\mathbb{C}l(TM)}(\slashed{\mathsf{S}},S)$. We prove the above statement with the means of the heat kernel of the heat semigroup $e^{-tD^2}$. The first outstanding result is the McKean-Singer theorem that describes the index in terms of the supertrace of the heat kernel. The trace of heat kernel is obtained from local geometric information. Moreover, if we use the asymptotic expansion of the kernel we will see that in the computation of the index only one term matters. The Berezin formula tells us that the supertrace is nothing but the coefficient of the Clifford top part, and at the end, Getzler calculus enables us to find the integral of these top parts in terms of characteristic classes.
Resumo:
The existence of genuinely non-geometric backgrounds, i.e. ones without geometric dual, is an important question in string theory. In this paper we examine this question from a sigma model perspective. First we construct a particular class of Courant algebroids as protobialgebroids with all types of geometric and non-geometric fluxes. For such structures we apply the mathematical result that any Courant algebroid gives rise to a 3D topological sigma model of the AKSZ type and we discuss the corresponding 2D field theories. It is found that these models are always geometric, even when both 2-form and 2-vector fields are neither vanishing nor inverse of one another. Taking a further step, we suggest an extended class of 3D sigma models, whose world volume is embedded in phase space, which allow for genuinely non-geometric backgrounds. Adopting the doubled formalism such models can be related to double field theory, albeit from a world sheet perspective.
Resumo:
In many instances of holographic correspondences between a d-dimensional boundary theory and a (. d+. 1)-dimensional bulk, a direct argument in the boundary theory implies that there must exist a simple and precise relation between the Euclidean on-shell action of a (. d-. 1)-brane probing the bulk geometry and the Euclidean gravitational bulk action. This relation is crucial for the consistency of holography, yet it is non-trivial from the bulk perspective. In particular, we show that it relies on a nice isoperimetric inequality that must be satisfied in a large class of Poincaré-Einstein spaces. Remarkably, this inequality follows from theorems by Lee and Wang.
Resumo:
According to a traditional rationalist proposal, it is possible to attain knowledge of certain necessary truths by means of insight—an epistemic mental act that combines the 'presentational' character of perception with the a priori status usually reserved for discursive reasoning. In this dissertation, I defend the insight proposal in relation to a specific subject matter: elementary Euclidean plane geometry, as set out in Book I of Euclid's Elements. In particular, I argue that visualizations and visual experiences of diagrams allow human subjects to grasp truths of geometry by means of visual insight. In the first two chapters, I provide an initial defense of the geometrical insight proposal, drawing on a novel interpretation of Plato's Meno to motivate the view and to reply to some objections. In the remaining three chapters, I provide an account of the psychological underpinnings of geometrical insight, a task that requires considering the psychology of visual imagery alongside the details of Euclid's geometrical system. One important challenge is to explain how basic features of human visual representations can serve to ground our intuitive grasp of Euclid's postulates and other initial assumptions. A second challenge is to explain how we are able to grasp general theorems by considering diagrams that depict only special cases. I argue that both of these challenges can be met by an account that regards geometrical insight as based in visual experiences involving the combined deployment of two varieties of 'dynamic' visual imagery: one that allows the subject to visually rehearse spatial transformations of a figure's parts, and another that allows the subject to entertain alternative ways of structurally integrating the figure as a whole. It is the interplay between these two forms of dynamic imagery that enables a visual experience of a diagram, suitably animated in visual imagination, to justify belief in the propositions of Euclid’s geometry. The upshot is a novel dynamic imagery account that explains how intuitive knowledge of elementary Euclidean plane geometry can be understood as grounded in visual insight.
Resumo:
Dust attenuation affects nearly all observational aspects of galaxy evolution, yet very little is known about the form of the dust-attenuation law in the distant universe. Here, we model the spectral energy distributions of galaxies at z ~ 1.5–3 from CANDELS with rest-frame UV to near-IR imaging under different assumptions about the dust law, and compare the amount of inferred attenuated light with the observed infrared (IR) luminosities. Some individual galaxies show strong Bayesian evidence in preference of one dust law over another, and this preference agrees with their observed location on the plane of infrared excess (IRX, L_TIR/L_UV) and UV slope (β). We generalize the shape of the dust law with an empirical model, A_ λ,σ =E(B-V)k_ λ (λ / λ v)^ σ where k_λ is the dust law of Calzetti et al., and show that there exists a correlation between the color excess E(B-V) and tilt δ with δ =(0.62±0.05)log(E(B-V))+(0.26±0.02). Galaxies with high color excess have a shallower, starburst-like law, and those with low color excess have a steeper, SMC-like law. Surprisingly, the galaxies in our sample show no correlation between the shape of the dust law and stellar mass, star formation rate, or β. The change in the dust law with color excess is consistent with a model where attenuation is caused by scattering, a mixed star–dust geometry, and/or trends with stellar population age, metallicity, and dust grain size. This rest-frame UV-to-near-IR method shows potential to constrain the dust law at even higher redshifts (z>3).
Resumo:
In a paper by Biro et al. [7], a novel twist on guarding in art galleries is introduced. A beacon is a fixed point with an attraction pull that can move points within the polygon. Points move greedily to monotonically decrease their Euclidean distance to the beacon by moving straight towards the beacon or sliding on the edges of the polygon. The beacon attracts a point if the point eventually reaches the beacon. Unlike most variations of the art gallery problem, the beacon attraction has the intriguing property of being asymmetric, leading to separate definitions of attraction region and inverse attraction region. The attraction region of a beacon is the set of points that it attracts. For a given point in the polygon, the inverse attraction region is the set of beacon locations that can attract the point. We first study the characteristics of beacon attraction. We consider the quality of a "successful" beacon attraction and provide an upper bound of $\sqrt{2}$ on the ratio between the length of the beacon trajectory and the length of the geodesic distance in a simple polygon. In addition, we provide an example of a polygon with holes in which this ratio is unbounded. Next we consider the problem of computing the shortest beacon watchtower in a polygonal terrain and present an $O(n \log n)$ time algorithm to solve this problem. In doing this, we introduce $O(n \log n)$ time algorithms to compute the beacon kernel and the inverse beacon kernel in a monotone polygon. We also prove that $\Omega(n \log n)$ time is a lower bound for computing the beacon kernel of a monotone polygon. Finally, we study the inverse attraction region of a point in a simple polygon. We present algorithms to efficiently compute the inverse attraction region of a point for simple, monotone, and terrain polygons with respective time complexities $O(n^2)$, $O(n \log n)$ and $O(n)$. We show that the inverse attraction region of a point in a simple polygon has linear complexity and the problem of computing the inverse attraction region has a lower bound of $\Omega(n \log n)$ in monotone polygons and consequently in simple polygons.