964 resultados para Geometria-Curiosidades
Resumo:
This qualitative nature of work was developed with the participation of a group of students enrolled in the first year of high school from a public school of the state of São Paulo, in the city of Taubaté. Their goal was to determine how students deal with geometry tasks in investigative classes. To guide this research was drawn up the following question: As students of the first year of high school express their knowledge of building triangles and quads in classes of investigative activities?. The choice of investigative nature of this activity occurred by enhancing student participation and thus generate a greater chance of it not be guided only by what the teacher wants, but by his own curiosity and using their own tools for this. In the data analysis process stands out the interest generated in students for this type of activity and posture maintained throughout the work, mobilizing their expertise to answer the questions posed
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
New concepts on porosity appraisal in ancient and modern construction materials. The role of Fractal Geometry on porosity characterization and transport phenomena. This work studied the potential of Fractal Geometry to the characterization of porous materials. Besides the descriptive aspects of the pore size distribution, the fractal dimensions have led to the development of rational relations for the prediction of permeability coefficients to fluid and heat transfer. The research considered natural materials used in historical buildings (rock and earth) as well as currently employed materials as hydraulic cement and technologically advanced materials such as silicon carbide or YSZ ceramics. The experimental results of porosity derived from the techniques of mercury intrusion and from the image analysis. Data elaboration was carried out according to established procedures of Fractal Geometry. It was found that certain classes of materials are clearly fractal and respond to simple patterns such as Sierpinski and Menger models. In several cases, however, the fractal character is not recognised because the microstructure of the material is based on different phases at different dimensional scales, and in consequence the “fractal dimensions” calculated from porosimetric data do not come within the standard range (less than 3). Using different type and numbers of fractal units is possible, however, to obtain “virtual” microstructures that have the fraction of voids and pore size distribution equivalent with the experimental ones for almost any material. Thus it was possible to take the expressions for the permeability and the thermal conduction which does not require empirical “constants”, these expressions have also provided values that are generally in agreement with the experimental available data. More problematic has been the fractal discussion of the geometry of the rupture of the material subjected to mechanical stress both external and internal applied. The results achieved on these issues are qualitative and prone to future studies. Keywords: Materials, Microstructure, Porosity, Fractal Geometry, Permeability, Thermal conduction, Mechanical strength.
Resumo:
L'argomento trattato in questa tesi riguarda lo studio geometrico delle curve piane. Una prima parte è dedicata alle varie definizioni di curva in matematica, la seconda tratta invece la presentazione delle curve da un punto di vista scolastico. Il mio lavoro è stato quello di analizzare alcuni testi delle scuole superiori allo scopo di evidenziare, laddove è stato possibile, il tipo di appproccio didattico utilizzato per presentare tali argomenti.
Resumo:
La tesi riporta la sperimentazione in un liceo scientifico di un software di geometria didattica applicato alle isometrie del piano. L'argomento è stato introdotto partendo dalle tassellazioni del piano mostrando immagini relative all'Alhambra in Spagna e dipinti di Escher.
Resumo:
La tesi è un'introduzione classica alla teoria dei Gruppi di Lie, con esempi tratti dall'algebra lineare elementare (fondamentalmente di gruppi matriciali). Dopo alcuni esempi concreti in dimensione tre, si passano a definire varietà topologiche e differenziali, e quindi gruppi di Lie astratti (assieme alle loro Algebre di Lie). Nel terzo capitolo si dimostra come alcuni sottogruppi del Gruppo Generale Lineare siano effettivamente Gruppi di Lie.
Resumo:
Il testo che segue è, in primo luogo, una lettura del Tractatus de intellectus emendatione di Spinoza. Tra i tanti filtri che potevano caratterizzare la lettura di quest'opera, quello che si è adottato ha avuto lo scopo di far emergere nei suoi tratti fondamentali la distanza tra l'approccio spinoziano al problema della conoscenza e del metodo per il suo raggiungimento e l'approccio cartesiano.