996 resultados para Geographical images
Resumo:
Land cover (LC) changes play a major role in global as well as at regional scale patterns of the climate and biogeochemistry of the Earth system. LC information presents critical insights in understanding of Earth surface phenomena, particularly useful when obtained synoptically from remote sensing data. However, for developing countries and those with large geographical extent, regular LC mapping is prohibitive with data from commercial sensors (high cost factor) of limited spatial coverage (low temporal resolution and band swath). In this context, free MODIS data with good spectro-temporal resolution meet the purpose. LC mapping from these data has continuously evolved with advances in classification algorithms. This paper presents a comparative study of two robust data mining techniques, the multilayer perceptron (MLP) and decision tree (DT) on different products of MODIS data corresponding to Kolar district, Karnataka, India. The MODIS classified images when compared at three different spatial scales (at district level, taluk level and pixel level) shows that MLP based classification on minimum noise fraction components on MODIS 36 bands provide the most accurate LC mapping with 86% accuracy, while DT on MODIS 36 bands principal components leads to less accurate classification (69%).
Resumo:
We consider a wireless sensor network whose main function is to detect certain infrequent alarm events, and to forward alarm packets to a base station, using geographical forwarding. The nodes know their locations, and they sleep-wake cycle, waking up periodically but not synchronously. In this situation, when a node has a packet to forward to the sink, there is a trade-off between how long this node waits for a suitable neighbor to wake up and the progress the packet makes towards the sink once it is forwarded to this neighbor. Hence, in choosing a relay node, we consider the problem of minimizing average delay subject to a constraint on the average progress. By constraint relaxation, we formulate this next hop relay selection problem as a Markov decision process (MDP). The exact optimal solution (BF (Best Forward)) can be found, but is computationally intensive. Next, we consider a mathematically simplified model for which the optimal policy (SF (Simplified Forward)) turns out to be a simple one-step-look-ahead rule. Simulations show that SF is very close in performance to BF, even for reasonably small node density. We then study the end-to-end performance of SF in comparison with two extremal policies: Max Forward (MF) and First Forward (FF), and an end-to-end delay minimising policy proposed by Kim et al. 1]. We find that, with appropriate choice of one hop average progress constraint, SF can be tuned to provide a favorable trade-off between end-to-end packet delay and the number of hops in the forwarding path.
Resumo:
We report here the role of remote sensing (RS) and geographical information system (GIS) in the identification of geomorphic records and understanding of the local controls on the retreat of glaciers of the Baspa Valley, Himachal Pradesh, India. The geomorphic records mapped are accumulation zone, exposed ablation zone, moraine-covered ablation zone, snout, deglaciated valley, lateral moraine, medial moraine, terminal moraine and hanging glacier. Details of these features and stages of deglaciation have been extracted from RS data and mapped in a GIS environment. Glacial geomorphic data have been generated for 22 glaciers of the Baspa Valley. The retreat of glaciers has been estimated using the glacial maxima observed on satellite images. On the basis of percentage of retreat and the critical analysis of glacial geomorphic data for 22 glaciers of the Baspa Valley, they are classified into seven categories of very low to very very high retreat. From the analysis of the above 22 glaciers, it has been found that other than global warming, the retreat of glaciers of the Baspa Valley is inversely proportional to the size of the accumulation zone and the ratio of the moraine covered ablation/exposed ablation zone.
Resumo:
Thanks to advances in sensor technology, today we have many applications (space-borne imaging, medical imaging, etc.) where images of large sizes are generated. Straightforward application of wavelet techniques for above images involves certain difficulties. Embedded coders such as EZW and SPIHT require that the wavelet transform of the full image be buffered for coding. Since the transform coefficients also require storing in high precision, buffering requirements for large images become prohibitively high. In this paper, we first devise a technique for embedded coding of large images using zero trees with reduced memory requirements. A 'strip buffer' capable of holding few lines of wavelet coefficients from all the subbands belonging to the same spatial location is employed. A pipeline architecure for a line implementation of above technique is then proposed. Further, an efficient algorithm to extract an encoded bitstream corresponding to a region of interest in the image has also been developed. Finally, the paper describes a strip based non-embedded coding which uses a single pass algorithm. This is to handle high-input data rates. (C) 2002 Elsevier Science B.V. All rights reserved.
Reconstructing Solid Model from 2D Scanned Images of Biological Organs for Finite Element Simulation
Resumo:
This work presents a methodology to reconstruct 3D biological organs from image sequences or other scan data using readily available free softwares with the final goal of using the organs (3D solids) for finite element analysis. The methodology deals with issues such as segmentation, conversion to polygonal surface meshes, and finally conversion of these meshes to 3D solids. The user is able to control the detail or the level of complexity of the solid constructed. The methodology is illustrated using 3D reconstruction of a porcine liver as an example. Finally, the reconstructed liver is imported into the commercial software ANSYS, and together with a cyst inside the liver, a nonlinear analysis performed. The results confirm that the methodology can be used for obtaining 3D geometry of biological organs. The results also demonstrate that the geometry obtained by following this methodology can be used for the nonlinear finite element analysis of organs. The methodology (or the procedure) would be of use in surgery planning and surgery simulation since both of these extensively use finite elements for numerical simulations and it is better if these simulations are carried out on patient specific organ geometries. Instead of following the present methodology, it would cost a lot to buy a commercial software which can reconstruct 3D biological organs from scanned image sequences.
Resumo:
Fully structured and matured open source spatial and temporal analysis technology seems to be the official carrier of the future for planning of the natural resources especially in the developing nations. This technology has gained enormous momentum because of technical superiority, affordability and ability to join expertise from all sections of the society. Sustainable development of a region depends on the integrated planning approaches adopted in decision making which requires timely and accurate spatial data. With the increased developmental programmes, the need for appropriate decision support system has increased in order to analyse and visualise the decisions associated with spatial and temporal aspects of natural resources. In this regard Geographic Information System (GIS) along with remote sensing data support the applications that involve spatial and temporal analysis on digital thematic maps and the remotely sensed images. Open source GIS would help in wide scale applications involving decisions at various hierarchical levels (for example from village panchayat to planning commission) on economic viability, social acceptance apart from technical feasibility. GRASS (Geographic Resources Analysis Support System, http://wgbis.ces.iisc.ernet.in/grass) is an open source GIS that works on Linux platform (freeware), but most of the applications are in command line argument, necessitating a user friendly and cost effective graphical user interface (GUI). Keeping these aspects in mind, Geographic Resources Decision Support System (GRDSS) has been developed with functionality such as raster, topological vector, image processing, statistical analysis, geographical analysis, graphics production, etc. This operates through a GUI developed in Tcltk (Tool command language / Tool kit) under Linux as well as with a shell in X-Windows. GRDSS include options such as Import /Export of different data formats, Display, Digital Image processing, Map editing, Raster Analysis, Vector Analysis, Point Analysis, Spatial Query, which are required for regional planning such as watershed Analysis, Landscape Analysis etc. This is customised to Indian context with an option to extract individual band from the IRS (Indian Remote Sensing Satellites) data, which is in BIL (Band Interleaved by Lines) format. The integration of PostgreSQL (a freeware) in GRDSS aids as an efficient database management system.
Resumo:
The economic prosperity and quality of life in a region are closely linked to the level of its per capita energy consumption. In India more than 70% of the total population inhabits rural areas and 85-90% of energy requirement is being met by bioresources. With dwindling resources, attention of planners is diverted to viable energy alternatives to meet the rural energy demand. Biogas as fuel is one such alternative, which can be obtained by anaerobic digestion of animal residues and domestic and farm wastes, abundantly available in the countryside. Study presents the techniques to assess biogas potential spatially using GIS in Kolar district, Karnataka State, India. This would help decision makers in selecting villages for implementing biogas programmes based on resource availability. Analyses reveal that the domestic energy requirement of more than 60% population can be met by biogas option. This is based on the estimation of the per capita requirement of gas for domestic purposes and availability of livestock residues.
Resumo:
Image filtering techniques have numerous potential applications in biomedical imaging and image processing. The design of filters largely depends on the a-priori knowledge about the type of noise corrupting the image and image features. This makes the standard filters to be application and image specific. The most popular filters such as average, Gaussian and Wiener reduce noisy artifacts by smoothing. However, this operation normally results in smoothing of the edges as well. On the other hand, sharpening filters enhance the high frequency details making the image non-smooth. An integrated general approach to design filters based on discrete cosine transform (DCT) is proposed in this study for optimal medical image filtering. This algorithm exploits the better energy compaction property of DCT and re-arrange these coefficients in a wavelet manner to get the better energy clustering at desired spatial locations. This algorithm performs optimal smoothing of the noisy image by preserving high and low frequency features. Evaluation results show that the proposed filter is robust under various noise distributions.