965 resultados para Gap model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Basic research is fundamental for discovering potential diagnostic and therapeutic tools, including drugs, vaccines and new diagnostic techniques. On this basis, diagnosis and treatment methods for many diseases have been developed. Presently, discovering new candidate molecules and testing them in animals are relatively easy tasks that require modest resources and responsibility. However, crossing the animal-to-human barrier is still a great challenge that most researchers tend to avoid. Thus, bridging this current gap between clinical and basic research must be encouraged and elucidated in training programmes for health professionals. This project clearly shows the challenges faced by a group of Brazilian researchers who, after discovering a new fibrin sealant through 20 years of painstaking basic work, insisted on having the product applied clinically. The Brazilian government has recently become aware of this challenge and has accordingly defined the product as strategic to the public health of the country. Thus, in addition to financing research and development laboratories, resources were invested in clinical trials and in the development of a virtual platform termed the Virtual System to Support Clinical Research (SAVPC); this platform imparts speed, reliability and visibility to advances in product development, fostering interactions among sponsors, physicians, students and, ultimately, the research subjects themselves. This pioneering project may become a future model for other public institutions in Brazil, principally in overcoming neglected diseases, which unfortunately continue to afflict this tropical country. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are strong uncertainties regarding LAI dynamics in forest ecosystems in response to climate change. While empirical growth & yield models (G&YMs) provide good estimations of tree growth at the stand level on a yearly to decennial scale, process-based models (PBMs) use LAI dynamics as a key variable for enabling the accurate prediction of tree growth over short time scales. Bridging the gap between PBMs and G&YMs could improve the prediction of forest growth and, therefore, carbon, water and nutrient fluxes by combining modeling approaches at the stand level.Our study aimed to estimate monthly changes of leaf area in response to climate variations from sparse measurements of foliage area and biomass. A leaf population probabilistic model (SLCD) was designed to simulate foliage renewal. The leaf population was distributed in monthly cohorts, and the total population size was limited depending on forest age and productivity. Foliage dynamics were driven by a foliation function and the probabilities ruling leaf aging or fall. Their formulation depends on the forest environment.The model was applied to three tree species growing under contrasting climates and soil types. In tropical Brazilian evergreen broadleaf eucalypt plantations, the phenology was described using 8 parameters. A multi-objective evolutionary algorithm method (MOEA) was used to fit the model parameters on litterfall and LAI data over an entire stand rotation. Field measurements from a second eucalypt stand were used to validate the model. Seasonal LAI changes were accurately rendered for both sites (R-2 = 0.898 adjustment, R-2 = 0.698 validation). Litterfall production was correctly simulated (R-2 = 0.562, R-2 = 0.4018 validation) and may be improved by using additional validation data in future work. In two French temperate deciduous forests (beech and oak), we adapted phenological sub-modules of the CASTANEA model to simulate canopy dynamics, and SLCD was validated using LAI measurements. The phenological patterns were simulated with good accuracy in the two cases studied. However, IA/max was not accurately simulated in the beech forest, and further improvement is required.Our probabilistic approach is expected to contribute to improving predictions of LAI dynamics. The model formalism is general and suitable to broadleaf forests for a large range of ecological conditions. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The aim of this study was to compare the correspondence between gap formation and apical microleakage in root canals filled with epoxy resin-based (AH Plus) combined or not with resinous primer or with a dimethacrylate-based root canal sealer (Epiphany). Material and Methods: Thirty-nine lower single-rooted human premolars were filled by the lateral condensation technique (LC) and immersed in a 50-wt% aqueous silver nitrate solution at 37 degrees C (24 h). After longitudinal sectioning, epoxy resin replicas were made from the tooth specimens. Both the replicas and the specimens were prepared for scanning electron microscopy (SEM). The gaps were observed in the replicas. Apical microleakage was detected in the specimens by SEM/energy dispersive spectroscopy (SEM/EDS). The data were analyzed statistically using an Ordinal Logistic Regression model and Analysis of Correspondence (alpha=0.05). Results: Epiphany presented more regions containing gaps between dentin and sealer (p<0.05). There was correspondence between the presence of gaps and microleakage (p<0.05). Microleakage was similar among the root-filling materials (p>0.05). Conclusions: The resinous primer did not improve the sealing ability of AH Plus sealer and the presence of gaps had an effect on apical microleakage for all materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The competition between confinement potential fluctuations and band-gap renormalization (BGR) in GaAs/AlxGa1-xAs quantum wells grown on [1 0 0] and [3 1 1]A GaAs substrates is evaluated. The results clearly demonstrate the coexistence of the band-tail states filling related to potential fluctuations and the band-gap renormalization caused by an increase in the density of photogenerated carriers during the photoluminescence (PL) experiments. Both phenomena have strong influence on temperature dependence of the PL-peak energy (E-PL(T)). As the photon density increases, the E-PL can shift to either higher or lower energies, depending on the sample temperature. The temperature at which the displacement changes from a blueshift to a redshift is governed by the magnitude of the potential fluctuations and by the variation of BGR with excitation density. A simple band-tail model with a Gaussian-like distribution of the density of state was used to describe the competition between the band-tail filling and the BGR effects on E-PL(T). (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have performed multicanonical simulations to study the critical behavior of the two-dimensional Ising model with dipole interactions. This study concerns the thermodynamic phase transitions in the range of the interaction delta where the phase characterized by striped configurations of width h = 1 is observed. Controversial results obtained from local update algorithms have been reported for this region, including the claimed existence of a second-order phase transition line that becomes first order above a tricritical point located somewhere between delta = 0.85 and 1. Our analysis relies on the complex partition function zeros obtained with high statistics from multicanonical simulations. Finite size scaling relations for the leading partition function zeros yield critical exponents. that are clearly consistent with a single second-order phase transition line, thus excluding such a tricritical point in that region of the phase diagram. This conclusion is further supported by analysis of the specific heat and susceptibility of the orientational order parameter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Introduction We conducted the present study to investigate whether early large-volume crystalloid infusion can restore gut mucosal blood flow and mesenteric oxygen metabolism in severe sepsis. Methods Anesthetized and mechanically ventilated male mongrel dogs were challenged with intravenous injection of live Escherichia coli (6 × 109 colony-forming units/ml per kg over 15 min). After 90 min they were randomly assigned to one of two groups – control (no fluids; n = 13) or lactated Ringer's solution (32 ml/kg per hour; n = 14) – and followed for 60 min. Cardiac index, mesenteric blood flow, mean arterial pressure, systemic and mesenteric oxygen-derived variables, blood lactate and gastric carbon dioxide tension (PCO2; by gas tonometry) were assessed throughout the study. Results E. coli infusion significantly decreased arterial pressure, cardiac index, mesenteric blood flow, and systemic and mesenteric oxygen delivery, and increased arterial and portal lactate, intramucosal PCO2, PCO2 gap (the difference between gastric mucosal and arterial PCO2), and systemic and mesenteric oxygen extraction ratio in both groups. The Ringer's solution group had significantly higher cardiac index and systemic oxygen delivery, and lower oxygen extraction ratio and PCO2 gap at 165 min as compared with control animals. However, infusion of lactated Ringer's solution was unable to restore the PCO2 gap. There were no significant differences between groups in mesenteric oxygen delivery, oxygen extraction ratio, or portal lactate at the end of study. Conclusion Significant disturbances occur in the systemic and mesenteric beds during bacteremic severe sepsis. Although large-volume infusion of lactated Ringer's solution restored systemic hemodynamic parameters, it was unable to correct gut mucosal PCO2 gap.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of my dissertation is to study the gender wage gap with a specific focus on developing and transition countries. In the first chapter I present the main existing theories proposed to analyse the gender wage gap and I review the empirical literature on the gender wage gap in developing and transition countries and its main findings. Then, I discuss the overall empirical issues related to the estimation of the gender wage gap and the issues specific to developing and transition countries. The second chapter is an empirical analysis of the gender wage gap in a developing countries, the Union of Comoros, using data from the multidimensional household budget survey “Enquete integrale auprès des ménages” (EIM) run in 2004. The interest of my work is to provide a benchmark analysis for further studies on the situation of women in the Comorian labour market and to contribute to the literature on gender wage gap in Africa by making available more information on the dynamics and mechanism of the gender wage gap, given the limited interest on the topic in this area of the world. The third chapter is an applied analysis of the gender wage gap in a transition country, Poland, using data from the Labour Force Survey (LSF) collected for the years 1994 and 2004. I provide a detailed examination of how gender earning differentials have changed over the period starting from 1994 to a more advanced transition phase in 2004, when market elements have become much more important in the functioning of the Polish economy than in the earlier phase. The main contribution of my dissertation is the application of the econometrical methodology that I describe in the beginning of the second chapter. First, I run a preliminary OLS and quantile regression analysis to estimate and describe the raw and conditional wage gaps along the distribution. Second, I estimate quantile regressions separately for males and females, in order to allow for different rewards to characteristics. Third, I proceed to decompose the raw wage gap estimated at the mean through the Oaxaca-Blinder (1973) procedure. In the second chapter I run a two-steps Heckman procedure by estimating a model of participation in the labour market which shows a significant selection bias for females. Forth, I apply the Machado-Mata (2005) techniques to extend the decomposition analysis at all points of the distribution. In Poland I can also implement the Juhn, Murphy and Pierce (1991) decomposition over the period 1994-2004, to account for effects to the pay gap due to changes in overall wage dispersion beyond Oaxaca’s standard decomposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The progresses of electron devices integration have proceeded for more than 40 years following the well–known Moore’s law, which states that the transistors density on chip doubles every 24 months. This trend has been possible due to the downsizing of the MOSFET dimensions (scaling); however, new issues and new challenges are arising, and the conventional ”bulk” architecture is becoming inadequate in order to face them. In order to overcome the limitations related to conventional structures, the researchers community is preparing different solutions, that need to be assessed. Possible solutions currently under scrutiny are represented by: • devices incorporating materials with properties different from those of silicon, for the channel and the source/drain regions; • new architectures as Silicon–On–Insulator (SOI) transistors: the body thickness of Ultra-Thin-Body SOI devices is a new design parameter, and it permits to keep under control Short–Channel–Effects without adopting high doping level in the channel. Among the solutions proposed in order to overcome the difficulties related to scaling, we can highlight heterojunctions at the channel edge, obtained by adopting for the source/drain regions materials with band–gap different from that of the channel material. This solution allows to increase the injection velocity of the particles travelling from the source into the channel, and therefore increase the performance of the transistor in terms of provided drain current. The first part of this thesis work addresses the use of heterojunctions in SOI transistors: chapter 3 outlines the basics of the heterojunctions theory and the adoption of such approach in older technologies as the heterojunction–bipolar–transistors; moreover the modifications introduced in the Monte Carlo code in order to simulate conduction band discontinuities are described, and the simulations performed on unidimensional simplified structures in order to validate them as well. Chapter 4 presents the results obtained from the Monte Carlo simulations performed on double–gate SOI transistors featuring conduction band offsets between the source and drain regions and the channel. In particular, attention has been focused on the drain current and to internal quantities as inversion charge, potential energy and carrier velocities. Both graded and abrupt discontinuities have been considered. The scaling of devices dimensions and the adoption of innovative architectures have consequences on the power dissipation as well. In SOI technologies the channel is thermally insulated from the underlying substrate by a SiO2 buried–oxide layer; this SiO2 layer features a thermal conductivity that is two orders of magnitude lower than the silicon one, and it impedes the dissipation of the heat generated in the active region. Moreover, the thermal conductivity of thin semiconductor films is much lower than that of silicon bulk, due to phonon confinement and boundary scattering. All these aspects cause severe self–heating effects, that detrimentally impact the carrier mobility and therefore the saturation drive current for high–performance transistors; as a consequence, thermal device design is becoming a fundamental part of integrated circuit engineering. The second part of this thesis discusses the problem of self–heating in SOI transistors. Chapter 5 describes the causes of heat generation and dissipation in SOI devices, and it provides a brief overview on the methods that have been proposed in order to model these phenomena. In order to understand how this problem impacts the performance of different SOI architectures, three–dimensional electro–thermal simulations have been applied to the analysis of SHE in planar single and double–gate SOI transistors as well as FinFET, featuring the same isothermal electrical characteristics. In chapter 6 the same simulation approach is extensively employed to study the impact of SHE on the performance of a FinFET representative of the high–performance transistor of the 45 nm technology node. Its effects on the ON–current, the maximum temperatures reached inside the device and the thermal resistance associated to the device itself, as well as the dependence of SHE on the main geometrical parameters have been analyzed. Furthermore, the consequences on self–heating of technological solutions such as raised S/D extensions regions or reduction of fin height are explored as well. Finally, conclusions are drawn in chapter 7.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 1-D 1/2-spin XXZ model with staggered external magnetic field, when restricting to low field, can be mapped into the quantum sine-Gordon model through bosonization: this assures the presence of soliton, antisoliton and breather excitations in it. In particular, the action of the staggered field opens a gap so that these physical objects are stable against energetic fluctuations. In the present work, this model is studied both analytically and numerically. On the one hand, analytical calculations are made to solve exactly the model through Bethe ansatz: the solution for the XX + h staggered model is found first by means of Jordan-Wigner transformation and then through Bethe ansatz; after this stage, efforts are made to extend the latter approach to the XXZ + h staggered model (without finding its exact solution). On the other hand, the energies of the elementary soliton excitations are pinpointed through static DMRG (Density Matrix Renormalization Group) for different values of the parameters in the hamiltonian. Breathers are found to be in the antiferromagnetic region only, while solitons and antisolitons are present both in the ferromagnetic and antiferromagnetic region. Their single-site z-magnetization expectation values are also computed to see how they appear in real space, and time-dependent DMRG is employed to realize quenches on the hamiltonian parameters to monitor their time-evolution. The results obtained reveal the quantum nature of these objects and provide some information about their features. Further studies and a better understanding of their properties could bring to the realization of a two-level state through a soliton-antisoliton pair, in order to implement a qubit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biorelevante Medien sind entwickelt worden, um die Bedingungen im Magen-Darm-Trakt vor und nach der Mahlzeit zu imitieren. Mit FaSSIF und FeSSIF wurden Medien eingeführt, die nicht nur die pH- und Puffer-Kapazität des Dünndarms widerspiegeln, sondern auch Lipid und physiologische Tensid-Arten enthalten. Diese Medien (FaSSIF-V2 und FaSSlFmod6.5) wurden für Bioverfügbarkeitstudien in der Medikamentenentwicklung im Laufe der Jahre kontinuierlich weiterentwickelt. Dennoch sind die auf dem Markt verfügbaren Medien immer noch nicht in der Lage, die realen physiologischen Bedingungen zu simulieren. In der jetzigen Zusammensetzung sind nicht alle Kompetenten enthalten, welche natürlicher Weise im Duodenum vorkommen. Darüber hinaus wird nur eine 1:5 Verdünnung von FeSSIF zu FaSSIF angenommen, die individuelle Wasserzufuhr bei Medikamentengabe wird hierdurch jedoch nur eingeschränkt simuliert, obwohl diese von Patient zu Patient schwanken kann. rnZiel dieser Dissertation war die Verbesserung der Vorhersage der Auflösung und Absorption lipophiler Arzneistoffe durch Simulation der Bedingungen im zweiten Teil des Zwölffingerdarms mit neuen biorelevanten Medien, sowie unter Einwirkung zusätzlicher Detergention als Wirkstoffträger. rnUm den Effekt der Verdünnungsrate und Zeit im Dünndarm zu untersuchen, wurde die Entwicklung der Nanopartikel in der Magen-Darm-Flüssigkeit FaSSIFmod6.5 zu verschiedenen Zeitpunkten und Wassergehalten untersucht. Dafür wurden kinetische Studien an verschieden konzentrierten Modellmedien nach Verdünnungssprung untersucht. Das Modell entspricht der Vermischung der Gallenflüssigkeit mit dem Darminhalt bei variablem Volumen. Die Ergebnisse zeigen, dass Art und Größe der Nanopartikel stark von Verdünnung und Einirkungszeit abhängen. rnrnDie menschliche Darmflüssigkeit enthält Cholesterin, welches in allen früheren Modellmedien fehlt. Daher wurden biokompatible und physiologische Modellflüssigkeiten, FaSSIF-C, entwickelt. Der Cholesteringehalt von FaSSIF - 7C entspricht der Gallenflüssigkeit einer gesunden Frau, FaSSIF - 10C der einer gesunden männlichen Person und FaSSIF - 13C der in einigen Krankheitszuständen. Die intestinale Teilchen-Struktur-Untersuchung mit dynamische Lichtstreuung (DLS) und Neutronen-Kleinwinkelstreuung (SANS) ergab, dass die Korngröße von Vesikeln mit zunehmender Cholesterin-Konzentration abnahm. Zu hohe Cholesterin-Konzentration bewirkte zusätzlich sehr große Partikel, welche vermutlich aus Cholesterin-reichen “Disks“ bestehen. Die Löslichkeiten einiger BCS Klasse II Wirkstoffe (Fenofibrat, Griseofulvin, Carbamazepin, Danazol) in diesen neuen Medien zeigten, dass die Löslichkeit in unterschiedlicher Weise mit der Cholesteringehalt zusammen hing und dieser Effekt selektiv für die Droge war. rnDarüber hinaus wurde die Wirkung von einigen Tensiden auf die kolloidale Struktur und Löslichkeit von Fenofibrat in FaSSIFmod6.5 und FaSSIF -7C untersucht. Struktur und Löslichkeit waren Tensid- und Konzentrations-abhängig. Im Falle von FaSSIFmod6.5 zeigten die Ergebnisse eine dreifache Verzweigung der Lösungswege. Im Bereich mittlerer Tensidkonzentration wurde eine Löslichkeitslücke der Droge zwischen der Zerstörung der Galle-Liposomen und der Bildung von Tensid-reichen Mizellen beobachtet. In FaSSIF - 7C, zerstörten Tenside in höherer Konzentration die Liposomenstruktur trotz der allgemeinen Stabilisierung der Membranen durch Cholesterin. rnDie in dieser Arbeit vorgestellten Ergebnisse ergeben, dass die Anwesenheit von Cholesterin als eine fehlende Komponente der menschlichen Darmflüssigkeit in biorelevanten Medien wichtig ist und dazu beitragen kann, das in vivo Verhalten schwerlöslicher Arzneistoffe im Körper besser vorhersagen zu können. Der Verdünnungsgrad hat einen Einfluss auf die Nanopartikel-Struktur und Tenside beeinflussen die Löslichkeit von Medikamenten in biorelevanten Medien: Dieser Effekt ist sowohl von der Konzentration das Tensids abhängig, als auch dessen Typ.rnrn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary goal of this work is related to the extension of an analytic electro-optical model. It will be used to describe single-junction crystalline silicon solar cells and a silicon/perovskite tandem solar cell in the presence of light-trapping in order to calculate efficiency limits for such a device. In particular, our tandem system is composed by crystalline silicon and a perovskite structure material: metilammoniumleadtriiodide (MALI). Perovskite are among the most convenient materials for photovoltaics thanks to their reduced cost and increasing efficiencies. Solar cell efficiencies of devices using these materials increased from 3.8% in 2009 to a certified 20.1% in 2014 making this the fastest-advancing solar technology to date. Moreover, texturization increases the amount of light which can be absorbed through an active layer. Using Green’s formalism it is possible to calculate the photogeneration rate of a single-layer structure with Lambertian light trapping analytically. In this work we go further: we study the optical coupling between the two cells in our tandem system in order to calculate the photogeneration rate of the whole structure. We also model the electronic part of such a device by considering the perovskite top cell as an ideal diode and solving the drift-diffusion equation with appropriate boundary conditions for the silicon bottom cell. We have a four terminal structure, so our tandem system is totally unconstrained. Then we calculate the efficiency limits of our tandem including several recombination mechanisms such as Auger, SRH and surface recombination. We focus also on the dependence of the results on the band gap of the perovskite and we calculare an optimal band gap to optimize the tandem efficiency. The whole work has been continuously supported by a numerical validation of out analytic model against Silvaco ATLAS which solves drift-diffusion equations using a finite elements method. Our goal is to develop a simpler and cheaper, but accurate model to study such devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intrahepatic cholestasis of pregnancy may be complicated by fetal arrhythmia, fetal hypoxia, preterm labor, and, in severe cases, intrauterine death. The precise etiology of fetal death is not known. However, taurocholate has been demonstrated to cause arrhythmia and abnormal calcium dynamics in cardiomyocytes. To identify the underlying reason for increased susceptibility of fetal cardiomyocytes to arrhythmia, we studied myofibroblasts (MFBs), which appear during structural remodeling of the adult diseased heart. In vitro, they depolarize rat cardiomyocytes via heterocellular gap junctional coupling. Recently, it has been hypothesized that ventricular MFBs might appear in the developing human heart, triggered by physiological fetal hypoxia. However, their presence in the fetal heart (FH) and their proarrhythmogenic effects have not been systematically characterized. Immunohistochemistry demonstrated that ventricular MFBs transiently appear in the human FH during gestation. We established two in vitro models of the maternal heart (MH) and FH, both exposed to increasing doses of taurocholate. The MH model consisted of confluent strands of rat cardiomyocytes, whereas for the FH model, we added cardiac MFBs on top of cardiomyocytes. Taurocholate in the FH model, but not in the MH model, slowed conduction velocity from 19 to 9 cm/s, induced early after depolarizations, and resulted in sustained re-entrant arrhythmias. These arrhythmic events were prevented by ursodeoxycholic acid, which hyperpolarized MFB membrane potential by modulating potassium conductance. CONCLUSION: These results illustrate that the appearance of MFBs in the FH may contribute to arrhythmias. The above-described mechanism represents a new therapeutic approach for cardiac arrhythmias at the level of MFB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite numerous studies about nitrogen-cycling in forest ecosystems, many uncertainties remain, especially regarding the longer-term nitrogen accumulation. To contribute to filling this gap, the dynamic process-based model TRACE, with the ability to simulate 15N tracer redistribution in forest ecosystems was used to study N cycling processes in a mountain spruce forest of the northern edge of the Alps in Switzerland (Alptal, SZ). Most modeling analyses of N-cycling and C-N interactions have very limited ability to determine whether the process interactions are captured correctly. Because the interactions in such a system are complex, it is possible to get the whole-system C and N cycling right in a model without really knowing if the way the model combines fine-scale interactions to derive whole-system cycling is correct. With the possibility to simulate 15N tracer redistribution in ecosystem compartments, TRACE features a very powerful tool for the validation of fine-scale processes captured by the model. We first adapted the model to the new site (Alptal, Switzerland; long-term low-dose N-amendment experiment) by including a new algorithm for preferential water flow and by parameterizing of differences in drivers such as climate, N deposition and initial site conditions. After the calibration of key rates such as NPP and SOM turnover, we simulated patterns of 15N redistribution to compare against 15N field observations from a large-scale labeling experiment. The comparison of 15N field data with the modeled redistribution of the tracer in the soil horizons and vegetation compartments shows that the majority of fine-scale processes are captured satisfactorily. Particularly, the model is able to reproduce the fact that the largest part of the N deposition is immobilized in the soil. The discrepancies of 15N recovery in the LF and M soil horizon can be explained by the application method of the tracer and by the retention of the applied tracer by the well developed moss layer, which is not considered in the model. Discrepancies in the dynamics of foliage and litterfall 15N recovery were also observed and are related to the longevity of the needles in our mountain forest. As a next step, we will use the final Alptal version of the model to calculate the effects of climate change (temperature, CO2) and N deposition on ecosystem C sequestration in this regionally representative Norway spruce (Picea abies) stand.