990 resultados para Galerie Durand-Ruel.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ink on tracing paper. Elevations. Signed 102 cm. x 85 cm. Scale: [1"] =20' [from photographic copy by Lance Burgharrdt]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ink on tracing paper. Elevations. Locations of present and proposed drains, manholes, catch-basins; cross-section of catch-basins. Signed. 97 cm. x 82 cm. Scale: 1"=20' [from photographic copy by Lance Burgharrdt]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ink on linen; location, type of planting, pools, gardens, arbors, buildings. Lodge by Hugh Garden. Signed. 87 cm. x 84 cm. Scale: 1"=20' [from photographic copy by Lance Burgharrdt]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Supplément": pp. [115]-117.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalogue of an exhibition held at Galerie Ernst Arnold, Dresden, 1907.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

pt.1. Les écoles d'Italie et d'Espagne, par A. Somof.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dans cette étude, je me suis proposée de développer une analyse sur le genre policier en me focalisant sur le langage et le jargon utilisés dans le polar La ribellione del manoscritto d’Olivier Durand. En effet, les actes terroristes récents perpétrés en France et partout dans le monde m’ont poussé à m’interroger sur le déroulement des interrogatoires et les diverses étapes par lesquelles doit passer la police pour retrouver et arrêter un criminel de qui on ne sait rien au départ. Le premier chapitre de mon étude est dédié au Professeur Olivier Durand et à La ribellione del manoscritto dont il est l’auteur. Durant la rédaction de ce mémoire, j’ai eu l’énorme privilège de travailler avec ce dernier qui m’a fasciné par son authenticité et son sérieux. Le deuxième chapitre est consacré à une traduction proprement dite dans laquelle je mets en évidence le passage de l’italien au français de trois passages du livre que j’ai choisis pour leur complexité dans la mesure où l’on y retrouve des éléments clés relatifs au genre policier. Dans le troisième chapitre, je m’attarde sur les difficultés rencontrées lors de la traduction dans une analyse dans laquelle je justifie mes choix et j’expose le procédé de traduction qui a mené au rendu final. J’ai aussi tenu à insérer le commentaire critique qu’a fait Olivier Durand après avoir lu mon travail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En République Démocratique du Congo (RDC), les savanes couvrent 76,8 millions d’hectares et constituent le second type d’écosystème après les forêts denses qui représentent 10% des forêts au niveau mondial. Ces formations herbeuses et arbustives offrent des potentialités importantes de séquestration du dioxyde de carbone pouvant contribuer par le fait même à la lutte contre le réchauffement climatique. C’est dans cette optique que se situe cette thèse intitulée « Évolution naturelle de savanes mises en défens à Ibi-village sur le plateau des Bateke en République Démocratique du Congo» dans le cadre du projet puits carbone d’IBI-Bateke. L’objectif général de notre recherche est d’étudier l’évolution naturelle en absence de feu de savanes situées dans des zones climatiques avec précipitations abondantes. Le plateau des Bateke nous a servi d’analyse de cas. Les inventaires floristiques et dendrométriques de la strate arbustive et arborescente de nos dispositifs hiérarchiques, ont permis de suivre ce processus naturel en tenant compte du gradient écologique dans les trois types de formations végétales (îlot forestier, la galerie forestière et la plantation d’Acacia auriculiformis). Nous avons mis en défens des savanes arbustives du plateau des Bateke pour étudier leur évolution naturelle vers une forêt, leur établissement, qualité, régénération forestière et en déterminer le taux de séquestration du carbone à l’aide des équations allométriques de Chave et al. (2005). Nous avons obtenu des valeurs moyennes de 107,477 t/ha de biomasse totale soit 51,05 Mg C/ha dans la galerie forestière, 103,772 t/ha de biomasse totale soit 49,29 Mg C/ha dans l’Îlot forestier, et 22,336 t/ha de biomasse totale soit 10,60 Mg C/ha dans la plantation. La mise en défens a stimulé l’installation des espèces forestières, et par le fait même accéléré la production de biomasse et donc la fixation de carbone. La comparaison de la richesse et la diversité spécifiques de l’Îlot et la galerie montre 22 familles botaniques inventoriées avec 55 espèces dans l’îlot forestier contre 27 familles dont 58 espèces dans la galerie. L’analyse canonique réalisée entre les variables de croissance et les variables environnementales révèle qu’il existe effectivement des relations fortes d’interdépendance entre les deux groupes de variables considérées. Cette méthodologie appropriée à la présente étude n’avait jamais été évoquée ni proposée par des études antérieures effectuées par d’autres chercheurs au plateau des Bateke. Mots Clés : Galerie forestière, Îlot forestier, mise en défens, plantation d’Acacia auriculiformis, reforestation, régénération naturelle, République Démocratique du Congo, savanes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Curriculum demands continue to increase on school education systems with teachers at the forefront of implementing syllabus requirements. Education is reported frequently as a solution to most societal problems and, as a result of the world’s information explosion, teachers are expected to cover more and more within teaching programs. How can teachers combine subjects in order to capitalise on the competing educational agendas within school timeframes? Fusing curricula requires the bonding of standards from two or more syllabuses. Both technology and ICT complement the learning of science. This study analyses selected examples of preservice teachers’ overviews for fusing science, technology and ICT. These program overviews focused on primary students and the achievement of two standards (one from science and one from either technology or ICT). These primary preservice teachers’ fused-curricula overviews included scientific concepts and related technology and/or ICT skills and knowledge. Findings indicated a range of innovative curriculum plans for teaching primary science through technology and ICT, demonstrating that these subjects can form cohesive links towards achieving the respective learning standards. Teachers can work more astutely by fusing curricula; however further professional development may be required to advance thinking about these processes. Bonding subjects through their learning standards can extend beyond previous integration or thematic work where standards may not have been assessed. Education systems need to articulate through syllabus documents how effective fusing of curricula can be achieved. It appears that education is a key avenue for addressing societal needs, problems and issues. Education is promoted as a universal solution, which has resulted in curriculum overload (Dare, Durand, Moeller, & Washington, 1997; Vinson, 2001). Societal and curriculum demands have placed added pressure on teachers with many extenuating education issues increasing teachers’ workloads (Mobilise for Public Education, 2002). For example, as Australia has weather conducive for outdoor activities, social problems and issues arise that are reported through the media calling for action; consequently schools have been involved in swimming programs, road and bicycle safety programs, and a wide range of activities that had been considered a parental responsibility in the past. Teachers are expected to plan, implement and assess these extra-curricula activities within their already overcrowded timetables. At the same stage, key learning areas (KLAs) such as science and technology are mandatory requirements within all Australian education systems. These systems have syllabuses outlining levels of content and the anticipated learning outcomes (also known as standards, essential learnings, and frameworks). Time allocated for teaching science in obviously an issue. In 2001, it was estimated that on average the time spent in teaching science in Australian Primary Schools was almost an hour per week (Goodrum, Hackling, & Rennie, 2001). More recently, a study undertaken in the U.S. reported a similar finding. More than 80% of the teachers in K-5 classrooms spent less than an hour teaching science (Dorph, Goldstein, Lee, et al., 2007). More importantly, 16% did not spend teaching science in their classrooms. Teachers need to learn to work smarter by optimising the use of their in-class time. Integration is proposed as one of the ways to address the issue of curriculum overload (Venville & Dawson, 2005; Vogler, 2003). Even though there may be a lack of definition for integration (Hurley, 2001), curriculum integration aims at covering key concepts in two or more subject areas within the same lesson (Buxton & Whatley, 2002). This implies covering the curriculum in less time than if the subjects were taught separately; therefore teachers should have more time to cover other educational issues. Expectedly, the reality can be decidedly different (e.g., Brophy & Alleman, 1991; Venville & Dawson, 2005). Nevertheless, teachers report that students expand their knowledge and skills as a result of subject integration (James, Lamb, Householder, & Bailey, 2000). There seems to be considerable value for integrating science with other KLAs besides aiming to address teaching workloads. Over two decades ago, Cohen and Staley (1982) claimed that integration can bring a subject into the primary curriculum that may be otherwise left out. Integrating science education aims to develop a more holistic perspective. Indeed, life is not neat components of stand-alone subjects; life integrates subject content in numerous ways, and curriculum integration can assist students to make these real-life connections (Burnett & Wichman, 1997). Science integration can provide the scope for real-life learning and the possibility of targeting students’ learning styles more effectively by providing more than one perspective (Hudson & Hudson, 2001). To illustrate, technology is essential to science education (Blueford & Rosenbloom, 2003; Board of Studies, 1999; Penick, 2002), and constructing technology immediately evokes a social purpose for such construction (Marker, 1992). For example, building a model windmill requires science and technology (Zubrowski, 2002) but has a key focus on sustainability and the social sciences. Science has the potential to be integrated with all KLAs (e.g., Cohen & Staley, 1982; Dobbs, 1995; James et al., 2000). Yet, “integration” appears to be a confusing term. Integration has an educational meaning focused on special education students being assimilated into mainstream classrooms. The word integration was used in the late seventies and generally focused around thematic approaches for teaching. For instance, a science theme about flight only has to have a student drawing a picture of plane to show integration; it did not connect the anticipated outcomes from science and art. The term “fusing curricula” presents a seamless bonding between two subjects; hence standards (or outcomes) need to be linked from both subjects. This also goes beyond just embedding one subject within another. Embedding implies that one subject is dominant, while fusing curricula proposes an equal mix of learning within both subject areas. Primary education in Queensland has eight KLAs, each with its established content and each with a proposed structure for levels of learning. Primary teachers attempt to cover these syllabus requirements across the eight KLAs in less than five hours a day, and between many of the extra-curricula activities occurring throughout a school year (e.g., Easter activities, Education Week, concerts, excursions, performances). In Australia, education systems have developed standards for all KLAs (e.g., Education Queensland, NSW Department of Education and Training, Victorian Education) usually designated by a code. In the late 1990’s (in Queensland), “core learning outcomes” for strands across all KLA’s. For example, LL2.1 for the Queensland Education science syllabus means Life and Living at Level 2 standard number 1. Thus, a teacher’s planning requires the inclusion of standards as indicated by the presiding syllabus. More recently, the core learning outcomes were replaced by “essential learnings”. They specify “what students should be taught and what is important for students to have opportunities to know, understand and be able to do” (Queensland Studies Authority, 2009, para. 1). Fusing science education with other KLAs may facilitate more efficient use of time and resources; however this type of planning needs to combine standards from two syllabuses. To further assist in facilitating sound pedagogical practices, there are models proposed for learning science, technology and other KLAs such as Bloom’s Taxonomy (Bloom, 1956), Productive Pedagogies (Education Queensland, 2004), de Bono’s Six Hats (de Bono, 1985), and Gardner’s Multiple Intelligences (Gardner, 1999) that imply, warrant, or necessitate fused curricula. Bybee’s 5 Es, for example, has five levels of learning (engage, explore, explain, elaborate, and evaluate; Bybee, 1997) can have the potential for fusing science and ICT standards.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For applied sport scientists charged with developing talented performers an essential requirement is to identify components contributing to the development and maintenance of expertise. Previous qualitative analysis has revealed several psychological (e.g., mental focus, goal-setting and selfevaluation), socio-cultural (e.g. community and family support, cultural influence), physical (e.g., strength, height) and environmental (e.g., access to facilities and climate) constraints on successful Olympian development (Abbott et al., 2005). Open-ended interviews with expert athletes and/or expert coaches have been used to reveal competencies of elite performers to derive factors associated with success (Durand-Bush et al., 2002). However, the influence of these factors is likely to be sport-specific due to different task constraints and the changing nature of the performer-environment relationship through practice, coaching and competing (Vaeyens et al., 2008). So far, only one study on expertise acquisition in cricket has been undertaken. Weissensteiner, et al. (2009) found that development of expertise in cricket batting in Australia may be facilitated by early unstructured play (i.e. ‘backyard cricket’), a wide range of sport experience during development, and early exposure to playing with seniors.