987 resultados para GROWTH IN-VITRO
Resumo:
For enterococcal implant-associated infections, the optimal treatment regimen has not been defined. We investigated the activity of daptomycin, vancomycin, and gentamicin (and their combinations) against Enterococcus faecalis in vitro and in a foreign-body infection model. Antimicrobial activity was investigated by time-kill and growth-related heat production studies (microcalorimetry) as well as with a guinea pig model using subcutaneously implanted cages. Infection was established by percutaneous injection of E. faecalis in the cage. Antibiotic treatment for 4 days was started 3 h after infection. Cages were removed 5 days after end of treatment to determine the cure rate. The MIC, the minimal bactericidal concentration (MBC) in the logarithmic phase, and the MBC in the stationary phase were 1.25, 5, and >20 μg/ml for daptomycin, 1, >64, and >64 μg/ml for vancomycin, and 16, 32, and 4 μg/ml for gentamicin, respectively. In vitro, gentamicin at subinhibitory concentrations improved the activity against E. faecalis when combined with daptomycin or vancomycin in the logarithmic and stationary phases. In the animal model, daptomycin cured 25%, vancomycin 17%, and gentamicin 50% of infected cages. In combination with gentamicin, the cure rate for daptomycin increased to 55% and that of vancomycin increased to 33%. In conclusion, daptomycin was more active than vancomycin against adherent E. faecalis, and its activity was further improved by the addition of gentamicin. Despite a short duration of infection (3 h), the cure rates did not exceed 55%, highlighting the difficulty of eradicating E. faecalis from implants already in the early stage of implant-associated infection.
Resumo:
The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF) and plant roots. The fungi provide the plant with inorganic phosphate (P). The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future.
Resumo:
Background: Bacteria form biofilms on the surface of orthopaedic devices, causing persistent infections. Monitoring biofilm formation on bone grafts and bone substitutes is challenging due to heterogeneous surface characteristics. We analyzed various bone grafts and bone substitutes regarding their propensity for in-vitro biofilm formation caused by S. aureus and S. epidermidis. Methods: Beta-tricalciumphosphate (b-TCP, ChronOsTM), processed human spongiosa (TutoplastTM) and PMMA (PalacosTM) were investigated. PE was added as a growth control. As test strains S. aureus (ATCC 29213) and S. epidermidis RP62A (ATCC 35984) were used. Test materials were incubated with 105 cfu/ml. After 24 h, test materials were removed and washed, followed by a standardised sonication protocol. The resulting sonication fluid was plated and bacterial counts were enumerated and expressed as cfu/sample. Sonicated samples were transferred to a microcalorimeter (TA Instrument) and heat flow monitored over a 24 h period with a precision of 0.0001°C and a sensitiviy of 200 μW. Experiments were performed in triplicates to calculate the mean ± SD. One-way ANOVA analysis was used for statistical analysis. Results: Bacterial counts (log10 cfu/sample) were highest on b-TCP (S. aureus 7.67 ± 0.17; S. epidermidis 8.14 ± 0.05) while bacterial density (log10 cfu/surface) was highest on PMMA (S. aureus 6.12 ± 0.2, S. epidermidis 7.65 ± 0.13). Detection time for S. aureus biofilms was shorter for the porous materials (b-TCP and Tutoplast, p <0.001) compared to the smooth materials (PMMA and PE) with no differences between b-TCP and TutoplastTM (p >0.05) or PMMA and PE (p >0.05). In contrast, for S. epidermidis biofilms the detection time was different (p <0.001) between all materials except between Tutoplast and PE (p >0.05). Conclusion: Our results demonstrate biofilm formation with both strains on all tested materials. Microcalorimetry was able to detect quantitatively the amount of biofilm. Further studies are needed to see whether calorimetry is a suitable tool also to monitor approaches to prevent and treat infections associated with bone grafts and bone substitutes.
Resumo:
The mammalian target of rapamycin (mTOR), which exists in two functionally distinct complexes, mTORC1 and mTORC2 plays an important role in tumor growth. Whereas the role of mTORC1 has been well characterized in this process, little is known about the functions of mTORC2 in cancer progression. In this study, we explored the specific role of mTORC2 in colon cancer using a short hairpin RNA expression system to silence the mTORC2-associated protein rictor. We found that downregulation of rictor in HT29 and LS174T colon cancer cells significantly reduced cell proliferation. Knockdown of rictor also resulted in a G1 arrest as observed by cell cycle analysis. We further observed that LS174T cells deficient for rictor failed to form tumors in a nude mice xenograft model. Taken together, these results show that the inhibition of mTORC2 reduces colon cancer cell proliferation in vitro and tumor xenograft formation in vivo. They also suggest that specifically targeting mTORC2 may provide a novel treatment strategy for colorectal cancer.
Resumo:
The enantiomeric siderophores pyochelin and enantiopyochelin of Pseudomonas aeruginosa and Pseudomonas protegens promote growth under iron limitation and activate transcription of their biosynthesis and uptake genes via the AraC-type regulator PchR. Here we investigated siderophore binding to PchR in vitro using fluorescence spectroscopy. A fusion of the N-terminal domain of P. aeruginosa PchR with maltose binding protein (MBP-PchR'PAO) bound iron-loaded (ferri-) pyochelin with an affinity (Kd) of 41 ± 5 μM. By contrast, no binding occurred with ferri-enantiopyochelin. Stereospecificity of a similar fusion protein of the P. protegens PchR (MBP-PchR'CHA0) was less pronounced. The Kd's of MBP-PchR'CHA0 for ferri-enantiopyochelin and ferri-pyochelin were 24 ± 5 and 40 ± 7 μM, respectively. None of the proteins interacted with the iron-free siderophore enantiomers, suggesting that transcriptional activation by PchR occurs only when the respective siderophore actively procures iron to the cell.
Resumo:
betaTC-tet cells are conditionally immortalized pancreatic beta cells which can confer long-term correction of hyperglycemia when transplanted in syngeneic streptozocin diabetic mice. The use of these cells for control of type I diabetes in humans will require their encapsulation and transplantation in non-native sites where relative hypoxia and cytokines may threaten their survival. In this study we genetically engineered betaTC-tet cells with the anti-apoptotic gene Bcl-2 using new lentiviral vectors and showed that it protected this cell line against apoptosis induced by hypoxia, staurosporine and a mixture of cytokines (IL-1beta, IFN-gamma and TNF-alpha). We further demonstrated that Bcl-2 expression permitted growth at higher cell density and with shorter doubling time. Expression of Bcl-2, however, did not inter- fere either with the intrinsic mechanism of growth arrest present in the betaTC-tet cells or with their normal glucose dose-dependent insulin secretory activity. Furthermore, Bcl-2 expressing betaTC-tet cells retained their capacity to secrete insulin under mild hypoxia. Finally, transplantation of these cells under the kidney capsule of streptozocin diabetic C3H mice corrected hyperglycemia for several months. These results demonstrate that the murine betaTC-tet cell line can be genetically modified to improve its resistance against different stress-induced apoptosis while preserving its normal physiological function. These modified cells represent an improved source for cell transplantation therapy of type I diabetes.
Resumo:
PURPOSE: The combination of embolic beads with a multitargeted tyrosine kinase inhibitor that inhibits tumor vessel growth is suggested as an alternative and improvement to the current standard doxorubicin-eluting beads for use in transarterial chemoembolization. This study demonstrates the in vitro loading and release kinetics of sunitinib using commercially available embolization microspheres and evaluates the in vitro biologic efficacy on cell cultures and the resulting in vivo pharmacokinetics profiles in an animal model. MATERIALS AND METHODS: DC Bead microspheres, 70-150 µm and 100-300 µm (Biocompatibles Ltd., Farnham, United Kingdom), were loaded by immersion in sunitinib solution. Drug release was measured in saline in a USP-approved flow-through apparatus and quantified by spectrophotometry. Activity after release was confirmed in cell culture. For pharmacokinetics and in vivo toxicity evaluation, New Zealand white rabbits received sunitinib either by intraarterial injection of 100-300 µm sized beads or per os. Plasma and liver tissue drug concentrations were assessed by liquid chromatography-tandem mass spectroscopy. RESULTS: Sunitinib loading on beads was close to complete and homogeneous. A total release of 80% in saline was measured, with similar fast-release profiles for both sphere sizes. After embolization, drug plasma levels remained below the therapeutic threshold (< 50 ng/mL), but high concentrations at 6 hours (14.9 µg/g) and 24 hours (3.4 µg/g) were found in the liver tissue. CONCLUSIONS: DC Bead microspheres of two sizes were efficiently loaded with sunitinib and displayed a fast and almost complete release in saline. High liver drug concentrations and low systemic levels indicated the potential of sunitinib-eluting beads for use in embolization.
Resumo:
Abstract: Osteomyelitis is responsible for high treatment costs, long hospital stays, and results in substantial morbidity. Treatment with surgical debridement and antibiotic-impregnated Polymethylmetacrylate (PMMA) beads is the standard of care, providing high local but low serum antibiotic concentrations, thereby avoiding systemic toxicity. However, for several reasons, the beads require surgical removal. Alternative antibiotic delivery systems should improve the treatment of bone infection, actively encourage bone healing and require no additional surgery for removal. We investigated the activity of gentamicin-loaded bioabsorbable beads against different microorganisms (Staphylococcus epidermidis, S. aureus, Escherichia coli, Enterococcus faecalis, Candida albicans) commonly causing surgical site bone infection, by microcalorimetry. Calcium sulphate beads containing gentamicin were incubated in microcalorimetry ampoules containing different concentrations of the corresponding microorganism. Growth medium with each germ and unloaded beads was used as positive control, growth medium with loaded beads alone as negative control. Bacterial growth-related heat production at 37 °C was measured for 24 h. Cultures without gentamicin-loaded beads produced heat-flow peaks corresponding to the exponential growth of the corresponding microorganisms in nutrient-rich medium. In contrast, cultures with gentamicin-loaded beads completely suppressed heat production during 24 h, demonstrating their antibiotic activity. Gentamicin-loaded beads effectively inhibited growth of susceptible microorganisms, under the described in vitro conditions.
Resumo:
ABSTRACT Trichoderma species are non-pathogenic microorganisms that protect against fungal diseases and contribute to increased crop yields. However, not all Trichoderma species have the same effects on crop or a pathogen, whereby the characterization and identification of strains at the species level is the first step in the use of a microorganism. The aim of this study was the identification – at species level – of five strains of Trichoderma isolated from soil samples obtained from garlic and onion fields located in Costa Rica, through the analysis of the ITS1, 5.8S, and ITS2 ribosomal RNA regions; as well as the determination of their individual antagonistic ability over S. cepivorum Berkeley. In order to distinguish the strains, the amplified products were analyzed using MEGA v6.0 software, calculating the genetic distances through the Tamura-Nei model and building the phylogenetic tree using the Maximum Likelihood method. We established that the evaluated strains belonged to the species T. harzianum and T. asperellum; however it was not possible to identify one of the analyzed strains based on the species criterion. To evaluate their antagonistic ability, the dual culture technique, Bell’s scale, and the percentage inhibition of radial growth (PIRG) were used, evidencing that one of the T. asperellum isolates presented the best yields under standard, solid fermentation conditions.
Resumo:
OBJECTIVES: The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) at high bacterial densities. The effect of three inoculum sizes on the selection of resistance to vancomycin, daptomycin, and linezolid was investigated in methicillin-resistant Staphylococcus aureus (MRSA). METHODS: Low (10(4) CFU/ml), medium (10(6) CFU/ml), and high (10(8) CFU/ml) inocula of MRSA were exposed to twofold increasing concentrations of either drug during 15 days of cycling. MICs for low (MICL), medium (MICM), and high (MICH) inocula were determined daily. Conventional MICs were measured at days 1, 5, 10, and 15. Experiments were performed in triplicate. RESULTS: At the beginning of the experiment a small IE was observed for vancomycin (MICL=1 μg/ml, MICM=1-2 μg/ml, and MICH=2 μg/ml) and a significant IE for daptomycin (MICL=0.25 μg/ml, MICM=0.25-0.5 μg/ml, and MICH=2 μg/ml). Linezolid exhibited no IE at low and medium inocula (MICL=1 μg/ml and MICM=1-2 μg/ml), but with the high inoculum, concentrations up to 2,048 μg/ml did not fully inhibit visual growth. During cycling, increase of MIC was observed for all antibiotics. At day 15, MICL, MICM, and MICH of vancomycin were 2-4, 4-8, and 4-16 μg/ml and of daptomycin were 0.5-2, 8-128, and 64-256 μg/ml, respectively. MICL and MICM of linezolid were 1 and 2-4 μg/ml, respectively. Conventional MICs showed vancomycin and daptomycin selection of resistance since day 5 depending on the inocula. No selection of linezolid resistance was observed. CONCLUSIONS: Our results showed the importance of the inoculum size in the development of resistance. Measures aimed at lowering the inoculum at the site of infection should be used whenever possible in parallel to antimicrobial therapy.
Resumo:
The ability to induce experimental endocarditis of biofilm-deficient mutants of Streptococcus gordonii was studied in an isogenic background. Strains were inactivated in either comD, fruK or pbp2b genes, which are involved in biofilm formation. These strains were clearly impaired (>75% reduction) in biofilm production in vitro. However, this did not result in a decreased severity of infection in vivo.
Resumo:
Photopolymerization is commonly used in a broad range of bioapplications, such as drug delivery, tissue engineering, and surgical implants, where liquid materials are injected and then hardened by means of illumination to create a solid polymer network. However, photopolymerization using a probe, e.g., needle guiding both the liquid and the curing illumination, has not been thoroughly investigated. We present a Monte Carlo model that takes into account the dynamic absorption and scattering parameters as well as solid-liquid boundaries of the photopolymer to yield the shape and volume of minimally invasively injected, photopolymerized hydrogels. In the first part of the article, our model is validated using a set of well-known poly(ethylene glycol) dimethacrylate hydrogels showing an excellent agreement between simulated and experimental volume-growth-rates. In the second part, in situ experimental results and simulations for photopolymerization in tissue cavities are presented. It was found that a cavity with a volume of 152 mm3 can be photopolymerized from the output of a 0.28-mm2 fiber by adding scattering lipid particles while only a volume of 38 mm3 (25%) was achieved without particles. The proposed model provides a simple and robust method to solve complex photopolymerization problems, where the dimension of the light source is much smaller than the volume of the photopolymerizable hydrogel.
Resumo:
OBJECTIVES: Activity of rifampicin against Propionibacterium acnes biofilms was recently demonstrated, but rifampicin resistance has not yet been described in this organism. We investigated the in vitro emergence of rifampicin resistance in P. acnes and characterized its molecular background. METHODS: P. acnes ATCC 11827 was used (MIC 0.007 mg/L). The mutation rate was determined by inoculation of 10(9) cfu of P. acnes on rifampicin-containing agar plates incubated anaerobically for 7 days. Progressive emergence of resistance was studied by serial exposure to increasing concentrations of rifampicin in 72 h cycles using a low (10(6) cfu/mL) and high (10(8) cfu/mL) inoculum. The stability of resistance was determined after three subcultures of rifampicin-resistant isolates on rifampicin-free agar. For resistant mutants, the whole rpoB gene was amplified, sequenced and compared with a P. acnes reference sequence (NC006085). RESULTS: P. acnes growth was observed on rifampicin-containing plates with mutation rates of 2 ± 1 cfu × 10(-9) (4096× MIC) and 12 ± 5 cfu × 10(-9) (4 × MIC). High-level rifampicin resistance emerged progressively after 4 (high inoculum) and 13 (low inoculum) cycles. In rifampicin-resistant isolates, the MIC remained >32 mg/L after three subcultures. Mutations were detected in clusters I (amino acids 418-444) and II (amino acids 471-486) of the rpoB gene after sequence alignment with a Staphylococcus aureus reference sequence (CAA45512). The five following substitutions were found: His-437 → Tyr, Ser-442 → Leu, Leu-444 → Ser, Ile-483 → Val and Ser-485 → Leu. CONCLUSION: The rifampicin MIC increased from highly susceptible to highly resistant values. The resistance remained stable and was associated with mutations in the rpoB gene. To our knowledge, this is the first report of the emergence of rifampicin resistance in P. acnes.
Resumo:
Objectives: Dermatophytes are highly specialized fungi which are the most common agents of superficial mycoses in humans and animals. The particular ability of these microorganisms to invade and multiply within keratinized host structures is presumably linked to their secreted keratinolytic activity, which is therefore a major putative virulence attribute of these fungi. The overall adaptation and transcriptional response of dermatophytes during protein degradation and/or infection is largely unknown. Methods: A Trichophyton rubrum cDNA microarray was developed and used for the transcriptional analysis of T. rubrum and Arthroderma benhamiae cells during growth on protein substrates. Moreover, the gene expression profile in A. benhamiae cells was monitored during infection of guinea pigs. Results: T. rubrum and A. benhamiae cells activate a large set of genes encoding secreted endo- and exoproteases during growth on soy and keratin. In addition, other specifically induced factors with potential implication in protein utilization were identified, e.g. multiple transporters, metabolic enzymes, transcription factors and hypothetical proteins with unknown function. Notably however, the protease gene expression profile in the fungal cells during infection was significantly different from the pattern elicited during in vitro growth on keratin. Conclusions: Our results suggest specific functions of individual proteases during infection, which may not be restricted to the degradation of keratin. This first, broad in vivo transcriptional profiling approach in dermatophytes gives new molecular insights into pathogenicity associated adaptation mechanisms that make these microorganisms the most successful causitive agents of superficial mycoses.