936 resultados para GLUCOSE-PRODUCTION
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The production of hyaluronidase and chondroitin sulphatase by Candida albicans, Candida tropicalis, Candida parapsilosis, Candida guilliermondii and Candida krusei was investigated using a complex culture medium (Sabouraud glucose agar) and a chemically defined medium. Among the 63 C. albicans isolates tested, 61 (97.8%) were found to be hyaluronidase and chondroitin sulphatase producers; one isolate produced only chondroitin sulphatase and one other was unable to produce either enzyme. The second major hyaluronidase and chondroitin sulphatase producing species was C. tropicalis followed by C. guilliermondii, C. parapsilosis and C. krusei. Among the C. albicans isolates tested no relation between the source of isolation and the amount of hyaluronidase and chondroitin sulphatase produced was found.
Resumo:
The growth and the extracellular amylase production by Aspergillus ochraceus were studied in a stationary culture medium. Maximum growth rate of this fungus was found after 5 days of incubation at 30° C, but maximum amylase production was obtained after 2 days. The highest amylase production were attained with lactose, maltose, xylose and starch as carbon sources. The extracellular amylase production and mycelial growth were influenced by the concentration of starch. Other carbohydrates supported growth but did not induce amylase synthesis and glucose repressed it, indicating catabolite repression in this microorganism. The presence of both mechanisms of induction and repression suggests that at least these multiple forms of regulation are present in A. ochraceus. Of the nitrogen sources tested, casaminoacids, ammonium nitrate and sodium nitrate stimulated the highest yield of amylase. Optimal amylase production was obtained at pH 5.0, but enzyme activity was found only in the 4.0-6.0 pH range. These results were probably due to the inhibitory effect of NH 4 +-N in the culture medium.
Resumo:
The PKC1 gene in the yeast Saccharomyces cerevisiae encodes protein kinase C that is known to control a mitogen-activated protein (MAP) kinase cascade consisting of Bck1, Mkk1 and Mkk2, and Mpk1. This cascade affects the cell wall integrity but the phenotype of Pkc1 mutants suggests additional targets which have not yet been identified. We show that a pkc1Δ mutant, as opposed to mutants in the MAP kinase cascade, displays two major defects in the control of carbon metabolism. It shows a delay in the initiation of fermentation upon addition of glucose and a defect in derepression of SUC2 gene after exhaustion of glucose from the medium. After addition of glucose the production of both ethanol and glycerol started very slowly. The V max of glucose transport dropped considerably and Northern blot analysis showed that induction of the HXT1, HXT2 and HXT4 genes was strongly reduced. Growth of the pkc1Δ mutant was absent on glycerol and poor on galactose and raffinose. Oxygen uptake was barely present. Derepression of invertase activity and SUC2 transcription upon transfer of cells from glucose to raffinose was deficient in the pkc1Δ mutant as opposed to the wild-type. Our results suggest an involvement of Pkc1p in the control of carbon metabolism which is not shared by the downstream MAP kinase cascade. © 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
GCTase production by a new strain of Bacillus alkalophillc CGII isolated from Brazilian wastewater of manioc flour industry was examined. The growth medium used was composed by 1.5% starch, 1.5% nitrogen and 1% Na 2CO3. Higher activity was obtained with starch, maltodextrin and galactose. When glucose was added to the medium, no enzyme production was observed. High enzyme activity and growth were reached when aeration was increased (88.6 U/mL). The enzyme characterization showed an optimum pH and temperature 8.0 and 55°C for starch hydrolyses, respectively. Mg+ and Ca++ showed small activation; however, Hg + and Cu+ showed a strong enzyme inhibition.
Resumo:
A newly-isolated thermophilic strain of the zygomycete fungus Rhizomucor pusillus 13.36 produced highly active dextrinogenic and saccharogenic enzymes. Cassava pulp was a good alternative substrate for amylase production. Dextrinogenic and saccharogenic amylases exhibited optimum activities at a pH of 4.0-4.5 and 5.0 respectively and at a temperature of 75°C. The enzymes were highly thermostable, with no detectable loss of saccharogenic or dextrinogenic activity after 1 h and 6 h at 60°C, respectively. The saccharogenic activity was inhibited by Ca2+ while the dextrinogenic was indifferent to this ion. Both activities were inhibited by Fe2+ and Cu2+ Hydrolysis of soluble starch by the crude enzyme yielded 66% glucose, 19.5% maltose, 7.7% maltotriose and 6.6% oligosaccharides. Copyright © 2005, The Microbiological Society of Korea.
Fatty acid production by four strains of Mucor hiemalis grown in plant oil and soluble carbohydrates
Resumo:
Four Mucor hiemalis strains (M1, M2, M3 and M4), isolated from soil at a depth of 0 - 15 cm in the Juréia-Itatins Ecology Station (JIES), in the state of São Paulo, Brazil and were evaluated for the production of γ-linolenic (GLA) and other unsaturated fatty acids. Five growth variables (temperature, pH, carbon source, nitrogen source, and vegetable oils) were studied. Liquid media containing 2% vegetable oil (palm oil, canola oil, soybean oil, sesame oil, or sunflower oil) or 2% carbohydrate (fructose, galactose, glycerol, glucose, lactose, maltose, sucrose, sorbitol or xylose) and 1% yeast extract as a nitrogen source were used. The greatest biomass production was observed with M3 and M4 strains in palm oil (91.5 g l -1) and sunflower oil (68.3 g l -1) media, respectively. Strain M4 produced greater quantities of polyunsaturated acids in medium containing glucose. The GLA production in the M4 biomass was 1,132.2 mg l -1 in glucose medium. Plant oils were inhibitors of fatty acid production by these strains. © 2007 Academic Journals.
Resumo:
The objective of this work is to introduce and demonstrate the technical feasibility of the continuous flash fermentation for the production of butanol. The evaluation was carried out through mathematical modeling and computer simulation which is a good approach in such a process development stage. The process consists of three interconnected units, as follows: the fermentor, the cell retention system (tangential microfiltration) and the vacuum flash vessel (responsible for the continuous recovery of butanol from the broth). The efficiency of this process was experimentally validated for the ethanol fermentation, whose main results are also shown. With the proposed design the concentration of butanol in the fermentor was lowered from 11.3 to 7.8 g/l, which represented a significant reduction in the inhibitory effect. As a result, the final concentration of butanol was 28.2 g/l for a broth with 140 g/l of glucose. Solvents productivity and yield were, respectively, 11.7 g/l.h and 33.5 % for a sugar conversion of 95.6 %. Positive aspects about the flash fermentation process are the solvents productivity, the use of concentrated sugar solution and the final butanol concentration. The last two features can be responsible for a meaningful reduction in the distillation costs and result in environmental benefits due to lower quantities of wastewater generated by the process. © 2008 Berkeley Electronic Press. All rights reserved.
Resumo:
Botryosphaeria rhodina MAMB-05 produced β-1,3-glucanases and botryosphaeran when grown on glucose, while Trichoderma harzianum Rifai only produced the enzyme. A comparison of long-term cultivation (300h) by B. rhodina demonstrated a correlation between the formation of botryosphaeran (48h) and its consumption (after 108h), and de-repression of β-1,3-glucanase synthesis when glucose was depleted from the nutrient medium, whereas for T. harzianum enzyme production commenced during exponential growth. Growth profiles and levels of β-1,3-glucanases produced by both fungi on botryosphaeran also differed, as well as the production of β-1,3-glucanases and β-1,6-glucanases on glucose, lactose, laminarin, botryosphaeran, lasiodiplodan, curdlan, Brewer's yeast powder and lyophilized fungal mycelium, which were dependent upon the carbon source used. A statistical mixture-design used to optimize β-1,3-glucanase production by both fungi evaluated botryosphaeran, glucose and lactose concentrations as variables. For B. rhodina, glucose and lactose promoted enzyme production at the same levels (2.30UmL -1), whereas botryosphaeran added to these substrates exerted a synergic effect favorable for β-glucanase production by T. harzianum (4.25UmL -1). © 2010 Elsevier B.V.
Resumo:
We evaluated associations between the concentrations of heat shock proteins (hsp60 and hsp70) and their respective antibodies, alterations in maternal reproductive performance, and fetal malformations in pregnant rats with hyperglycemia. Mild diabetes (MD) or severe diabetes (SD) was induced in Sprague-Dawley rats prior to mating; non-treated non-diabetic rats (ND) served as controls. On day 21 of pregnancy, maternal blood was analyzed for hsp60 and hsp70 and their antibodies; and fetuses were weighed and analyzed for congenital malformations. Hsp and anti-hsp levels were correlated with blood glucose levels during gestation. There was a positive correlation between hsp60 and hsp70 levels and the total number of malformations (R∈=∈0.5908, P∈=∈0.0024; R∈=∈0.4877, P∈=∈0.0134, respectively) and the number of malformations per fetus (R∈=∈0.6103, P∈=∈0.0015; R∈=∈0.4875, P∈=∈0.0134, respectively). The anti-hsp60 IgG concentration was correlated with the number of malformations per fetus (R∈=∈0.3887, P∈=∈0.0451) and the anti-hsp70 IgG level correlated with the total number of malformations (R∈=∈0.3999, P∈=∈0.0387). Moreover, both hsp and anti-hsp antibodies showed negative correlations with fetal weight. The results suggest that there is a relationship between hsp60 and hsp70 levels and their respective antibodies and alterations in maternal reproductive performance and impaired fetal development and growth in pregnancies associated with diabetes. © 2012 Cell Stress Society International.
Characterization of a glucose- and solvent-tolerant extracellular tannase from Aspergillus phoenicis
Resumo:
Tannases have attracted wider attention because of their biotechnological potential, especially enzymes from filamentous fungi and other microorganisms. However, the biodiversity of these microorganisms has been poorly explored, and few strains were identified for tannase production and characterization. This article describes the production, purification and characterization of a glucose- and solvent-tolerant extracellular tannase from Aspergillus phoenicis. High enzymatic levels were obtained in Khanna medium containing tannic acid up to 72 h at 30 °C under 100 rpm. The purified enzyme with 65% of carbohydrate content had an apparent native molecular mass of 218 kDa with subunits of 120 kDa and 93 kDa and was stable at 50 °C for 1 h. Optima of temperature and pH were 60 °C and 5.0-6.5, respectively. The enzyme was not affected significantly by most ions, detergents and organic solvents. While glucose did not affect the tannase activity, the addition of a high concentration of gallic acid did. The Km values were 1.7 mM (tannic acid), 14.3 mM (methyl-gallate) and 0.6 mM (propyl-gallate). The enzyme was able to catalyze the transesterification reaction to produce propyl-gallate. All biochemical properties suggest the biotechnological potential of the glucose- and solvent-tolerant tannase from A. phoenicis. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results: OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform-near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions: OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level. © 2013 Chandel et al; licensee BioMed Central Ltd.
Resumo:
Background: Dogs are commonly affected by hyperglycemic conditions. Hyperglycemia compromises the immune response and favors bacterial infections; however, reports on the effects of glucose on neutrophil oxidative metabolism and apoptosis are conflicting in humans and rare in dogs. Considering the many complex factors that affect neutrophil oxidative metabolism in vivo, we investigated in vitro the specific effect of high concentrations of glucose on superoxide production and apoptosis rate in neutrophils from healthy dogs.Results: The capacity of the neutrophils to reduce tetrazolium nitroblue decreased significantly in the higher concentration of glucose (15.13 ± 9.73% (8 mmol/L) versus 8.93 ± 5.71% (16 mmol/L)). However, there were no changes in tetrazolium nitroblue reduction at different glucose concentrations when the neutrophils were first activated with phorbol myristate acetate. High concentrations of glucose did not affect the viability and apoptosis rate of canine neutrophils either with or without prior camptothecin stimulation. This study provides the first evidence that high concentrations of glucose inhibit the oxidative metabolism of canine neutrophils in vitro in a manner similar to that which occurs in humans, and that the decrease in superoxide production did not increase the apoptosis rate.Conclusions: A high concentration of glucose reduces the oxidative metabolism of canine neutrophils in vitro. It is likely that glucose at high concentrations rapidly affects membrane receptors responsible for the activation of NADPH oxidase in neutrophils; therefore, the nonspecific immune response can be compromised in dogs with acute and chronic hyperglycemic conditions. © 2013 Bosco et al.; licensee BioMed Central Ltd.
Resumo:
The physiological state of yeast cells changes during culture growth as a consequence of environmental changes (nutrient limitations, pH and metabolic products). Cultures that grow exponentially are heterogeneous cell populations made up of cells regulated by different metabolic and/or genetic control systems. The strain of baker's yeast selected by plating commercial compressed yeast was used for the production of glycerol-3- phosphate dehydrogenase. Glycerol-3-phosphate dehydrogenase (GPD) has been widely used in the enzyme assays with diverse compounds of industrial interest, such as glycerol or glycerol phosphate, as well as a number of important bioanalytical applications. Each cell state determines the level of key enzymes (genetic control), fluxes through metabolic pathways (metabolic control), cell morphology and size. The present study was carried out to determine the effects of environmental conditions and carbon source on GPD production from baker's yeast. Glucose, glycerol, galactose and ethanol were used as carbon sources. Glycerol and ethanol assimilations required agitation, which was dependent on the medium volume in the fermentation flask for the greatest accumulation of intracellular GPD. Enzyme synthesis was also affected by the initial pH of the medium and inoculum size. The fermentation time required for a high level of enzyme formation decreased with the inoculum size. The greatest amount of enzyme (0.45 U/ml) was obtained with an initial pH of 4.5 in the medium containing ethanol or glycerol. The final pH was maintained in YP-ethanol, but in the YP-glycerol the final pH increased to 6.9 during growth.
Resumo:
Obese Black women are at increased risk for development of gestational diabetes mellitus and have worse perinatal outcomes than do obese women of other ethnicities. Since hsp72 has been associated with the regulation of obesity-induced insulin resistance, we evaluated associations between glucose ingestion, hsp72 release and insulin production in Black pregnant women. Specifically, the effect of a 50-g glucose challenge test (GCT) on heat shock protein and insulin levels in the circulation 1 h later was evaluated. Hsp27 and hsp60 levels remained unchanged. In contrast, serum levels of hsp72 markedly increased after glucose ingestion (p = 0.0054). Further analysis revealed that this increase was limited to women who were not obese (body mass index <30). Insulin levels pre-GCT were positively correlated with body mass index (p = 0.0189). Median insulin concentrations also increased post GCT in non-obese women but remained almost unchanged in obese women. Post-GCT serum hsp72 concentrations were inversely correlated with post GCT insulin concentrations (p = 0.0111). These observations suggest that glucose intake during gestation in Black women rapidly leads to an elevation in circulating hsp72 only in non-obese Black women. The release of hsp72 may regulate the extent of insulin production in response to a glucose challenge and, thereby, protect the mother and/or fetus from development of hyperglycemia, hyperinsulinemia, and/or immune system alterations. © 2013 Cell Stress Society International.