971 resultados para G-CSF
Resumo:
Molecular dynamics (MD) studies have been carried out on the Hoogsteen hydrogen bonded parallel and the reverse Hoogsteen hydrogen banded antiparallel C.G*G triplexes. Earlier, the molecular mechanics studies had shown that the parallel structure was energetically more favourable than the antiparallel structure. To characterize the structural stability of the two triplexes and to investigate whether the antiparallel structure can transit to an energetically more favourable structure, due to the local fluctuations in the structure during the MD simulation, the two structures were subjected to 200ps of constant temperature vacuum MD simulations at 300K. Initially no constraints were applied to the structures and it was observed that for the antiparallel tripler, the structure showed a large root mean square deviation from the starting structure within the first 12ps and the N4-H41-O6 hydrogen bond in the WC duplex got distorted due to a high propeller twist and a moderate increase in the opening angle in the basepairs. Starting from an initial value of 30 degrees, helical twist of the average structure from this simulation had a value of 36 degrees, while the parallel structure stabilized at a twist of 33 degrees. In spite of the hydrogen bond distortions in the antiparallel tripler, it was energetically comparable to the parallel tripler. To examine the structural characteristics of an undistorted structure, another MD simulation was performed on the antiparallel tripler by constraining all the hydrogen bonds. This structure stabilized at an average twist of 33 degrees. In the course of the dynamics though the energy of the molecule - compared to the initial structure - improved, it did not become comparable to the parallel structure. Energy minimization studies performed in the presence of explicit water and counterions also showed the two structures to be equally favourable energetically Together these results indicate that the parallel C.G*G tripler with Hoogsteen hydrogen bonds also represents a stereochemically and energetically favourable structure for this class of triplexes.
Resumo:
Guanine rich sequences adopt a variety of four stranded structures, which differ in strand orientation and conformation about the glycosidic bond even though they are all stabilised by Hoogsteen hydrogen bonded guanine tetrads. Detailed model building and molecular mechanics calculations have been carried out to investigate various possible conformations of guanines along a strand and different possible orientations of guanine strands in a G-tetraplex structure. It is found that for an oligo G stretch per se, a parallel four stranded structure with all guanines in anti conformation is favoured over other possible tetraplex structures. Hence an alternating syn-anti arrangement of guanines along a strand is likely to occur only in folded back tetraplex structures with antiparallel G strands. Our study provides a theoretical rationale for the observed alternation of glycosidic conformation and the inverted stacking arrangement arising from base flipover, in antiparallel G-tetraplex structures and also highlights the various structural features arising due to different types of strand orientations. The molecular mechanics calculations help in elucidating the various interactions which stabilize different G-tetraplex structures and indicate that screening of phosphate charge by counterions could have a dramatic effect on groove width in these four stranded structures.
Resumo:
The self-complementary DNA fragment CCGGCGCCGG crystallizes in the rhombohedral space group R3 with unit cell parameters a = 54.07 angstrom and c = 44.59 angstrom. The structure has been determined by X-ray diffraction methods at 2.2 angstrom resolution and refined to an R value of 16.7%. In the crystal, the decamer forms B-DNA double helices with characteristic groove dimensions: compared with B-DNA of random sequence, the minor groove is wide and deep and the major groove is rather shallow. Local base pair geometries and stacking patterns are within the range commonly observed in B-DNA crystal structures. The duplex bears no resemblance to A-form DNA as might have been expected for a sequence with only GC base pairs. The shallow major groove permits an unusual crystal packing pattern with several direct intermolecular hydrogen bonds between phosphate oxygens and cytosine amino groups. In addition, decameric duplexes form quasi-infinite double helices in the crystal by end-to-end stacking. The groove geometries and accessibilities of this molecule as observed in the crystal may be important for the mode of binding of both proteins and drug molecules to G/C stretches in DNA.
Resumo:
Guanlne rich sequences adopt a variety of four stranded structures, which differ in strand orientation and conformation about the glycosldic bond even though they are all stabilised by Hoogsteen hydrogen bonded guanlne tetrads. Detailed model building and molecular mechanics calculations have been carried out to investigate various possible conformations of guanlnes along a strand and different possible orientations of guanlne strands In a G-tetraplex structure. It is found that for an ollgo G stretch per se, a parallel four stranded structure with all guanines In anti conformation is favoured over other possible tetraplex structures. Hence an alternating syn-anti arrangement of guanlnes along a strand is likely to occur only in folded back tetraplex structures with antiparallel G strands. Our study provides a theoretical rationale for the observed alternation of glycosldic conformation and the inverted stacking arrangement arising from base filpover, In antlparallel G-tetraplex structures and also highlights the various structural features arising due to different types of strand orientations. The molecular mechanics calculations help in elucidating the various interactions which stabilize different G-tetraplex structures and indicate that screening of phosphate charge by counterions could have a dramatic effect on groove width in these four stranded structures.
Resumo:
The t(14;18) translocation in follicular lymphoma is one of the most common chromosomal translocations. Most breaks on chromosome 18 are located at the 3'-UTR of the BCL2 gene and are mainly clustered in the major breakpoint region (MBR). Recently, we found that the BCL2 MBR has a non-B DNA character in genomic DNA. Here, we show that single-stranded DNA modeled from the template strand of the BCL2 MBR, forms secondary structures that migrate faster on native PAGE in the presence of potassium, due to the formation of intramolecular G-quadruplexes. Circular dichroism shows evidence for a parallel orientation for G-quadruplex structures in the template strand of the BCL2 MBR. Mutagenesis and the DMS modification assay confirm the presence of three guanine tetrads in the structure. 1H nuclear magnetic resonance studies further confirm the formation of an intramolecular G-quadruplex and a representative model has been built based on all of the experimental evidence. We also provide data consistent with the possible formation of a G-quadruplex structure at the BCL2 MBR within mammalian cells. In summary, these important features could contribute to the single-stranded character at the BCL2 MBR, thereby contributing to chromosomal fragility.
Resumo:
The t(14;18) translocation in follicular lymphoma is one of the most common chromosomal translocations. Most breaks on chromosome 18 are located at the 3'-UTR of the BCL2 gene and are mainly clustered in the major breakpoint region (MBR). Recently, we found that the BCL2 MBR has a non-B DNA character in genomic DNA. Here, we show that single-stranded DNA modeled from the template strand of the BCL2 MBR, forms secondary structures that migrate faster on native PAGE in the presence of potassium, due to the formation of intramolecular G-quadruplexes. Circular dichroism shows evidence for a parallel orientation for G-quadruplex structures in the template strand of the BCL2 MBR. Mutagenesis and the DMS modification assay confirm the presence of three guanine tetrads in the structure. 1H nuclear magnetic resonance studies further confirm the formation of an intramolecular G-quadruplex and a representative model has been built based on all of the experimental evidence. We also provide data consistent with the possible formation of a G-quadruplex structure at the BCL2 MBR within mammalian cells. In summary, these important features could contribute to the single-stranded character at the BCL2 MBR, thereby contributing to chromosomal fragility.
Resumo:
We review work initiated and inspired by Sudarshan in relativistic dynamics, beam optics, partial coherence theory, Wigner distribution methods, multimode quantum optical squeezing, and geometric phases. The 1963 No Interaction Theorem using Dirac's instant form and particle World Line Conditions is recalled. Later attempts to overcome this result exploiting constrained Hamiltonian theory, reformulation of the World Line Conditions and extending Dirac's formalism, are reviewed. Dirac's front form leads to a formulation of Fourier Optics for the Maxwell field, determining the actions of First Order Systems (corresponding to matrices of Sp(2,R) and Sp(4,R)) on polarization in a consistent manner. These groups also help characterize properties and propagation of partially coherent Gaussian Schell Model beams, leading to invariant quality parameters and the new Twist phase. The higher dimensional groups Sp(2n,R) appear in the theory of Wigner distributions and in quantum optics. Elegant criteria for a Gaussian phase space function to be a Wigner distribution, expressions for multimode uncertainty principles and squeezing are described. In geometric phase theory we highlight the use of invariance properties that lead to a kinematical formulation and the important role of Bargmann invariants. Special features of these phases arising from unitary Lie group representations, and a new formulation based on the idea of Null Phase Curves, are presented.
Resumo:
In the title compound, C28H21O4P, the eight-membered heterocyclic dioxaphosphocine ring has a distorted boat conformation, with the phosphoryl O atom axial and the phenoxy group equatorial. The P=O distance is 1.451 (1) Angstrom and the average length of the three P-O bonds is 1.573 (1) Angstrom. The phenyl ring is nearly perpendicular to both naphthalene planes, making dihedral angles of 91.30 (3) and 97.65 (5)degrees with them. The angle between the two naphthalene planes is 67.73 (3)degrees. The crystal structure is stabilized by van der Waals interactions.
Resumo:
The antiparallel intramolecular G quartet structure for the 3.5 copy Oxytricha telomeric sequence d(G(4)T(4))(3)G4 has been established using a combination of spectroscopic and chemical probing methods. In the presence of Naf ions, this sequence exhibits a circular dichroism spectrum with a positive band at 295 nm and a negative band around 265 nm, characteristic of an antiparallel G quartet structure. Further, we show that d(G(4)T(4))(3)G(4) adopts an antiparallel intramolecular G quartet structure even in K+ unlike d(G(4)T(4)G(4)). KMnO4 probing experiments indicated the existence of intra and interloop interactions in the Na+ induced structure. We have found that K+ not only increases the thermal stability of,G quartet structure but also binds to the loop region and disrupts stacking and interloop interactions. Biological consequences of such cation-dependent conformational micro-heterogeneity in the loop region of G quartet structures is also discussed.
Resumo:
We analyze the origin of de-enhancement for a number of vibrational modes in the 2(1)A(g) excited state of trans-azobenzene. We have used the time-dependent wave packet analysis of the RR intensities by including the multimode damping effects in the calculation. This avoids the use of unrealistically large values for the damping parameter. It is concluded that the de-enhancement is caused by the interference between the two uncoupled electronic states, and that the intensities observed under the so-called symmetry forbidden 2(1)A(g) <-- 1(1)A(g) transition are purely due to resonance excitation. It is also observed that the use of the time-dependent approach to study the de-enhancement effects caused by multiple electronic states on the RR intensities is not necessarily useful if one is interested in the structural dynamics.
Resumo:
A series of Pd ion-substituted CeO2-ZrO2 solid solutions were synthesized using the solution combustion technique. H2O2-assisted degradation of orange G was carried out in the presence of the catalysts. The activity of the catalysts was found to increase with the introduction of the second component in the solid solution, as signified by an increase in the rate constants and lowering of activation energy. The study showed the involvement of lattice oxygen and the importance of reducibility of the compound for the reaction. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The enzyme telomerase synthesizes the G-rich DNA strands of the telomere and its activity is often associated with cancer. The telomerase may be therefore responsible for the ability of a cancer cell-to escape apoptosis. The G-rich DNA sequences often adopt tetra-stranded structure, known as the G-quadruplex DNA (G4-DNA). The stabilization of the telomeric DNA into the G4-DNA structures by small molecules has been the focus of many researchers for the design and development of new anticancer agents. The compounds which stabilize the G-quadruplex in the telomere inhibit the telomerase activity. Besides telomeres, the G4-DNA forming sequences are present in the genomic regions of biological significance including the transcriptional regulatory and promoter regions of several oncogenes. Inducing a G-quadruplex structure within the G-rich promoter sequences is a potential way of achieving selective gene regulation. Several G-quadruplex stabilizing ligands are known. Minor groove binding ligands (MGBLs) interact with the double-helical DNA through the minor grooves sequence-specifically and interfere with several DNA associated processes. These MGBLs when suitably modified switch their preference sometimes from the duplex DNA to G4-DNA and stabilize the G4-DNA as well. Herein, we focus on the recent advances in understanding the G-quadruplex structures, particularly made by the human telomeric ends, and review the results of various investigations of the interaction of designed organic ligands with the G-quadruplex DNA while highlighting the importance of MGBL-G-quadruplex interactions.