225 resultados para Géométrie Algébrique


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dans cette thèse, nous étudions les fonctions propres de l'opérateur de Laplace-Beltrami - ou simplement laplacien - sur une surface fermée, c'est-à-dire une variété riemannienne lisse, compacte et sans bord de dimension 2. Ces fonctions propres satisfont l'équation $\Delta_g \phi_\lambda + \lambda \phi_\lambda = 0$ et les valeurs propres forment une suite infinie. L'ensemble nodal d'une fonction propre du laplacien est celui de ses zéros et est d'intérêt depuis les expériences de plaques vibrantes de Chladni qui remontent au début du 19ème siècle et, plus récemment, dans le contexte de la mécanique quantique. La taille de cet ensemble nodal a été largement étudiée ces dernières années, notamment par Donnelly et Fefferman, Colding et Minicozzi, Hezari et Sogge, Mangoubi ainsi que Sogge et Zelditch. L'étude de la croissance de fonctions propres n'est pas en reste, avec entre autres les récents travaux de Donnelly et Fefferman, Sogge, Toth et Zelditch, pour ne nommer que ceux-là. Notre thèse s'inscrit dans la foulée du travail de Nazarov, Polterovich et Sodin et relie les propriétés de croissance des fonctions propres avec la taille de leur ensemble nodal dans l'asymptotique $\lambda \nearrow \infty$. Pour ce faire, nous considérons d'abord les exposants de croissance, qui mesurent la croissance locale de fonctions propres et qui sont obtenus à partir de la norme uniforme de celles-ci. Nous construisons ensuite la croissance locale moyenne d'une fonction propre en calculant la moyenne sur toute la surface de ces exposants de croissance, définis sur de petits disques de rayon comparable à la longueur d'onde. Nous montrons alors que la taille de l'ensemble nodal est contrôlée par le produit de cette croissance locale moyenne et de la fréquence $\sqrt{\lambda}$. Ce résultat permet une reformulation centrée sur les fonctions propres de la célèbre conjecture de Yau, qui prévoit que la mesure de l'ensemble nodal croît au rythme de la fréquence. Notre travail renforce également l'intuition répandue selon laquelle une fonction propre se comporte comme un polynôme de degré $\sqrt{\lambda}$. Nous généralisons ensuite nos résultats pour des exposants de croissance construits à partir de normes $L^q$. Nous sommes également amenés à étudier les fonctions appartenant au noyau d'opérateurs de Schrödinger avec petit potentiel dans le plan. Pour de telles fonctions, nous obtenons deux résultats qui relient croissance et taille de l'ensemble nodal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cette thèse concerne le problème de trouver une notion naturelle de «courbure scalaire» en géométrie kählérienne généralisée. L'approche utilisée consiste à calculer l'application moment pour l'action du groupe des difféomorphismes hamiltoniens sur l'espace des structures kählériennes généralisées de type symplectique. En effet, il est bien connu que l'application moment pour la restriction de cette action aux structures kählériennes s'identifie à la courbure scalaire riemannienne. On se limite à une certaine classe de structure kählériennes généralisées sur les variétés toriques notée $DGK_{\omega}^{\mathbb{T}}(M)$ que l'on reconnaît comme étant classifiées par la donnée d'une matrice antisymétrique $C$ et d'une fonction réelle strictement convexe $\tau$ (ayant un comportement adéquat au voisinage de la frontière du polytope moment). Ce point de vue rend évident le fait que toute structure kählérienne torique peut être déformée en un élément non kählérien de $DGK_{\omega}^{\mathbb{T}}(M)$, et on note que cette déformation à lieu le long d'une des classes que R. Goto a démontré comme étant libre d'obstruction. On identifie des conditions suffisantes sur une paire $(\tau,C)$ pour qu'elle donne lieu à un élément de $DGK_{\omega}^{\mathbb{T}}(M)$ et on montre qu'en dimension 4, ces conditions sont également nécessaires. Suivant l'adage «l'application moment est la courbure» mentionné ci-haut, des formules pour des notions de «courbure scalaire hermitienne généralisée» et de «courbure scalaire riemannienne généralisée» (en dimension 4) sont obtenues en termes de la fonction $\tau$. Enfin, une expression de la courbure scalaire riemannienne généralisée en termes de la structure bihermitienne sous-jacente est dégagée en dimension 4. Lorsque comparée avec le résultat des physiciens Coimbra et al., notre formule suggère un choix canonique pour le dilaton de leur théorie.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nous nous proposons d’examiner et de comparer les analyses de Maurice Merleau-Ponty et d’Erwin Panofsky sur la question de la perspective linéaire. Merleau-Ponty, dans le sillage des analyses de Panofsky, soutient la thèse selon laquelle la perspective linéaire est non seulement une technique picturale qui nous présente une vision et une interprétation de l’espace et, plus généralement, du monde se constituant en rupture avec la perception naturelle, mais une « construction symbolique » qui nous fait proprement voir et concevoir le monde d’après les principes de la géométrie euclidienne. Quoiqu’ils partagent la même interprétation historique et symbolique de la perspective, Merleau-Ponty et Panofsky diffèrent pourtant quant à la signification philosophique qu’ils lui donnent. Alors que pour Panofsky la perspective témoigne de la vérité indépassable du criticisme kantien, elle est l’expression chez Merleau-Ponty d’une interrogation ontologique sur la perception irréductible à la conception de l’espace de la philosophie moderne.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La recherche de la formation des citoyens critiques et participatifs, dans le travail pédagogique avec les jeunes et les adultes, a besoin d un entraînement pédagogique qui va au delà de l attitude traditionnelle d'apprendre avec des méthodes mécaniques et arbitraires qui, en insistant excessivement sur l image du professeur, donnent priorité à l'enseignement, au détriment de l apprentissage. Dans ce sens, la présente étude, cherchant la possibilité de réalisation d'un travail alternatif pour l'enseignement des Mathématiques, dans une perspective transdisciplinaire, dans le sens de développer l apprentissage significatif des étudiants jeunes et adultes du Projet Croire, présente les résultats d'une recherche-intervention qui a utilisé les lettres du tarot comme ressource didactique en salle de classe. On prétend, avec cela, montrer cet instrument comme facilité d apprentissage de contenus des Mathématiques comme systèmes de numération, nombres entiers et géométrie, en amenant les Mathématiques dans une perspective historique et culturelle et donnant un traitement global à l'acte complexe d'apprendre. Dans ce travail, le jeune étudiant et l étudiant adulte est pris comme individu concret, prenant en considération les aspects cognitifs et les aspects d attitude de son apprentissage, ce qui est favorisé par la nature des lettres du tarot et par la compréhension adoptée, des mathématiques comme système symbolique

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research partly motivated by Lewis Carroll's Euclid and his modern rivals (1879) portuguese translation, this paper presents some hermeneutical remarks taken as necessary to understand the context in which such book was produced. The paper focuses particularly on education, in general, and on the teaching of mathematics and Geometry in victorian England.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Durante siglos, la geometría y el álgebra se fueron desarrollando como disciplinas matemáticas diferentes. El filósofo y matemático francés René Descartes, publicó en el año 1637 su tratado La Géométrie en el que introdujo un método para unir esas dos ramas de la matemática, llamado Geometría Analítica, basado en el uso de sistemas coordenados, por medio de los cuales, los procesos algebraicos se pueden aplicar al estudio de la geometría. La Geometría Analítica permite hallar y estudiar los lugares geométricos de forma sistemática y general. Provee de métodos para transformar los problemas geométricos en problemas algebraicos, resolverlos analíticamente e interpretar geométricamente los resultados. Geometría Analítica para Ciencias e Ingenierías, es un texto cuyo principal objetivo es acompañar el proceso de enseñanza y aprendizaje de un curso de Geometría analítica de nivel universitario de grado, promoviendo en el estudiante el desarrollo de habilidades de observación, comparación, análisis, síntesis e integración de conceptos tanto de la Geometría Analítica plana como de la espacial. Los contenidos que se estudian en este texto tienen gran variedad de aplicaciones en investigaciones matemáticas, en astronomía, física, química, biología, ingeniería, economía, entre otros. El texto se encuentra dividido en 5 capítulos, cada uno de los cuales cuenta con el desarrollo de contenidos teóricos, ejercicios y problemas de aplicación.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les méthodes d'optimisation statiques(c'est-a-dire des systemes dont les parametres n'.évoluent pas avec le temps) peuvent se diviser en deux grandes classes : les méthodes directes et les méthodes indirectes. Les premieres ocalisent le vecteur optimum par des mouvements tratégiques dans l'espace correspondant. Elles nécessitent la connaissance de la valeur de la fonction critere a chaque point, mais non la forme algébrique, ni ses dérivées.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

t. 1. Algèbre. Calcul intégral. 1898. xv, 471, [1] p.--t. 2. Géométrie. 1905. [4], 715, [1] p. diagrs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I. Algèbre, ligne droite et plan, trigonométrie, analyse, applications géométriques--II. Géométrie analytique: courbes et surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"A table of logarithms of numbers from 1 to 10,000": p. 1-62 (last group)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

t. 1. Eloge de René Descartes, par (A. L. Thomas. Discours de la méthode. Méditations métaphysiques. Objections aux Méditations avec les réponses de l'auteur.--t. 2. Objections contre les Méditations, avec les réponses de l'auteur.--t. 3. Les principes de la philosophie.--t. 4. Les passions de l'ame. Le monde, on Trairé de la lumière. L'homme. De la formation du foetus.--t. 5. La dioptrique. Les météores. La géométrie. Traité de la mécanique. Abrégé de la musique.--t. 6-10. Lettres.--t. 11. Lettre de René Descartes à Gisbert Voet. Règles pour la direction de Mesprit. Recherche de la vérité par les lumières naturelles. Premières pensées sur la génération des animaux. Des saveurs. Extrait des manuscrits de René Descartes.