939 resultados para Frequency range selection


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ni-Zn ferrites have been widely used in components for high-frequency range applications due to their high electrical resistivity, mechanical strength and chemical stability. Ni-Zn ferrite nanopowders doped with samarium with a nominal composition of Ni0.5Zn0.5Fe2-xSmxO4 (x = 0.0, 0.05, and 0.1 mol) were obtained by combustion synthesis using nitrates and urea as fuel. The morphological aspects of Ni-Zn-Sm ferrite nanopowders were investigated by X-ray diffraction, nitrogen adsorption by BET, sedimentation, scanning electron microscopy and magnetic properties. The results indicated that the Ni-Zn-Sm ferrite nanopowders were composed of soft agglomerates of nanoparticles with a high surface area (55.8-64.8 m(2)/g), smaller particles (18-20 nm) and nanocrystallite size particles. The addition of samarium resulted in a reduction of all the magnetic parameters evaluated, namely saturation magnetization (24-40 emu/g), remanent magnetization (2.2-3.5 emu/g) and coercive force (99.3-83.3 Oe). (c) 2007 Elsevier B. V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, Ba(Zr(0.25)Ti(0.75))O(3) ceramic was prepared by solid-state reaction. This material was characterized by x-ray diffraction and Fourier transform Raman spectroscopy. The temperature dependent dielectric properties were investigated in the frequency range from 1 kHz to 1 MHz. The dielectric measurements indicated a diffuse phase transition. The broadening of the dielectric permittivity in the frequency range as well as its shifting at higher temperatures indicated a relaxor-like behaviour for this material. The diffusivity and the relaxation strength were estimated using the modified Curie-Weiss law. The optical properties were analysed by ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements at room temperature. The UV-vis spectrum indicated that the Ba(Zr(0.25)Ti(0.75))O(3) ceramic has an optical band gap of 2.98 eV. A blue PL emission was observed for this compound when excited with 350 nm wavelength. The polarity as well as the PL property of this material was attributed to the presence of polar [TiO(6)] distorted clusters into a globally cubic matrix.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have revisited photoassociative ionization (PAI) in a cold sample of Na atmos. A two-color experiment was performed ina magneto-optical trap through the addition of aprobe laser. The observation of a marked change in the PAI rate for a definite frequency range can be attributed to the influence of repuisive levels and a possible avoided crossing between long-range molecular levels. (c) 2009 by Astro Ltd. Published exclusively by WLLEY-VCH Verlag GmbH & Co. KGaA

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Langmuir-Blodgett (LB) and layer-by-layer films (LbL) of a PPV (p-phenylenevinylene) derivative, an azo compound and tetrasulfonated phthalocyanines were successfully employed as transducers in an ""electronic tongue"" system for detecting trace levels of phenolic compounds in water. The choice of the materials was based on their distinct electrical natures, which enabled the array to establish a fingerprint of very similar liquids. Impedance spectroscopy measurements were taken in the frequency range from 10 Hz to 1 MHz, with the data analysed with principal component analysis (PCA). The sensing units were obtained from five-layer LB films of (poly[(2-methoxy-5-n-hexyloxy)-p-phenylenevinylene]), OC(1)OC(18)-PPV (poly(2-methoxy,5-(n-octadecyl)-p-phenylenevinylene)), DR (HEMA-co-DR13MA (poly-(hydroxyethylmethacrylate-co-[4`-[[2-(methacryloyloxy)-ethyl]ethylamino]-2-chloro-4-nitroazobenzene]))) and five-bilayer LbL films of tetrasulfonated metallic phthalocyanines deposited onto gold interdigitated electrodes. The sensors were immersed into phenol, 2-chloro-4-methoxyphenol, 2-chlorophenol and 3-chlorophenol (isomers) solutions at 1 x 10(-9) mol L(-1), with control experiments carried out in ultra pure water. Samples could be distinguished if the principal component analysis (PCA) plots were made with capacitance values taken at 10(3) Hz, which is promising for detection of trace amounts of phenolic pollutants in natural water.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show how a circuit analysis, used widely in electrical engineering, finds application to problems of light wave injection and transport in subwavelength structures in the optical frequency range. Lumped circuit and transmission-line analysis may prove helpful in the design of plasmonic devices with standard, functional properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The focus of this thesis is to discuss the development and modeling of an interface architecture to be employed for interfacing analog signals in mixed-signal SOC. We claim that the approach that is going to be presented is able to achieve wide frequency range, and covers a large range of applications with constant performance, allied to digital configuration compatibility. Our primary assumptions are to use a fixed analog block and to promote application configurability in the digital domain, which leads to a mixed-signal interface. The use of a fixed analog block avoids the performance loss common to configurable analog blocks. The usage of configurability on the digital domain makes possible the use of all existing tools for high level design, simulation and synthesis to implement the target application, with very good performance prediction. The proposed approach utilizes the concept of frequency translation (mixing) of the input signal followed by its conversion to the ΣΔ domain, which makes possible the use of a fairly constant analog block, and also, a uniform treatment of input signal from DC to high frequencies. The programmability is performed in the ΣΔ digital domain where performance can be closely achieved according to application specification. The interface performance theoretical and simulation model are developed for design space exploration and for physical design support. Two prototypes are built and characterized to validate the proposed model and to implement some application examples. The usage of this interface as a multi-band parametric ADC and as a two channels analog multiplier and adder are shown. The multi-channel analog interface architecture is also presented. The characterization measurements support the main advantages of the approach proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O crescente avanço nas mais diversas áreas da eletrônica, desde instrumentação em baixa freqüência até telecomunicações operando em freqüências muito elevadas, e a necessidade de soluções baratas em curto espaço de tempo que acompanhem a demanda de mercado, torna a procura por circuitos programáveis, tanto digitais como analógicos, um ponto comum em diversas pesquisas. Os dispositivos digitais programáveis, que têm como grande representante os Field Programmable Gate Arrays (FPGAs), vêm apresentando um elevado e contínuo crescimento em termos de complexidade, desempenho e número de transistores integrados, já há várias décadas. O desenvolvimento de dispositivos analógicos programáveis (Field Programmable Analog Arrays – FPAAs), entretanto, esbarra em dois pontos fundamentais que tornam sua evolução um tanto latente: a estreita largura de banda alcançada, conseqüência da necessidade de um grande número de chaves de programação e reconfiguração, e a elevada área consumida por componentes analógicos como resistores e capacitores, quando integrados em processos VLSI Este trabalho apresenta uma proposta para aumentar a faixa de freqüências das aplicações passíveis de serem utilizadas tanto em FPAAs comerciais quanto em outros FPAAs, através da utilização de uma interface de translação e seleção de sinais, mantendo características de programabilidade do FPAA em questão, sem aumentar em muito sua potência consumida. A proposta, a simulação e a implementação da interface são apresentadas ao longo desta dissertação. Resultados de simulação e resultados práticos obtidos comprovam a eficácia da proposta.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Different types of network oscillations occur in different behavioral, cognitive, or vigilance states. The rodent hippocampus expresses prominentoscillations atfrequencies between 4 and 12Hz,which are superimposed by phase-coupledoscillations (30 –100Hz).These patterns entrain multineuronal activity over large distances and have been implicated in sensory information processing and memory formation. Here we report a new type of oscillation at near- frequencies (2– 4 Hz) in the hippocampus of urethane-anesthetized mice. The rhythm is highly coherent with nasal respiration and with rhythmic field potentials in the olfactory bulb: hence, we called it hippocampal respiration-induced oscillations. Despite the similarity in frequency range, several features distinguish this pattern from locally generatedoscillations: hippocampal respiration-induced oscillations have a unique laminar amplitude profile, are resistant to atropine, couple differentlytooscillations, and are abolished when nasal airflow is bypassed bytracheotomy. Hippocampal neurons are entrained by both the respiration-induced rhythm and concurrent oscillations, suggesting a direct interaction between endogenous activity in the hippocampus and nasal respiratory inputs. Our results demonstrate that nasal respiration strongly modulates hippocampal network activity in mice, providing a long-range synchronizing signal between olfactory and hippocampal networks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of gypsum, one of the oldest building materials for the construction industry in the country has been experiencing a significant and steady growth, due to its low cost and some of its properties that confer comparative advantage over other binder materials. Its use comprises various applications including the coating of walls and the production of internal seals and linings. Moreover, the fibers are being increasingly incorporated into arrays fragile in an attempt to improve the properties of the composite by reducing the number of cracks, the opening of the same and its propagation velocity. Other properties, depending on the function of the component material or construction, among these thermal and acoustic performances, are of great importance in the context of buildings and could be improved, that is, having better performance with this embodiment. Conduct a comparative study of physico-mechanical, thermal and acoustic composite gypsum incorporating dry coconut fiber, in the form of blanket, constituted the main objective of this work. Improving the thermal and acoustic performances of precast gypsum, used for lining and internal vertical fences of buildings, was the purpose of development of these composites. To evaluate the effect of fiber content on the properties of the composites were used to manufacture the composite layer with different thicknesses. The composites were fabricated in the form of plates with dimensions of 500x500x24mm. To facilitate the comparative study of the properties were also made with material gypsum boards only. We then determined the physico-mechanical, thermal and acoustical plaster and composites. The results indicated that the composites were significant gains in relation to thermal performance and also acoustic, in certain frequency range, increasing the thickness of the blanket. Concerning other physical-mechanical properties, the results showed that although the compressive strength was lower than for the composite did not occur after a fracture catastrophic failure. The same trend was observed with regard to resistance to bending, since the composites have not suffered sudden rupture and still continued after the load supporting point of maximum load

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis, a frequency selective surface (FSS) consists of a two-dimensional periodic structure mounted on a dielectric substrate, which is capable of selecting signals in one or more frequency bands of interest. In search of better performance, more compact dimensions, low cost manufacturing, among other characteristics, these periodic structures have been continually optimized over time. Due to its spectral characteristics, which are similar to band-stop or band-pass filters, the FSSs have been studied and used in several applications for more than four decades. The design of an FSS with a periodic structure composed by pre-fractal elements facilitates the tuning of these spatial filters and the adjustment of its electromagnetic parameters, enabling a compact design which generally has a stable frequency response and superior performance relative to its euclidean counterpart. The unique properties of geometric fractals have shown to be useful, mainly in the production of antennas and frequency selective surfaces, enabling innovative solutions and commercial applications in microwave range. In recent applications, the FSSs modify the indoor propagation environments (emerging concept called wireless building ). In this context, the use of pre-fractal elements has also shown promising results, allowing a more effective filtering of more than one frequency band with a single-layer structure. This thesis approaches the design of FSSs using pre-fractal elements based on Vicsek, Peano and teragons geometries, which act as band-stop spatial filters. The transmission properties of the periodic surfaces are analyzed to design compact and efficient devices with stable frequency responses, applicable to microwave frequency range and suitable for use in indoor communications. The results are discussed in terms of the electromagnetic effect resulting from the variation of parameters such as: fractal iteration number (or fractal level), scale factor, fractal dimension and periodicity of FSS, according the pre-fractal element applied on the surface. The analysis of the fractal dimension s influence on the resonant properties of a FSS is a new contribution in relation to researches about microwave devices that use fractal geometry. Due to its own characteristics and the geometric shape of the Peano pre-fractal elements, the reconfiguration possibility of these structures is also investigated and discussed. This thesis also approaches, the construction of efficient selective filters with new configurations of teragons pre-fractal patches, proposed to control the WLAN coverage in indoor environments by rejecting the signals in the bands of 2.4~2.5 GHz (IEEE 802.11 b) and 5.0~6.0 GHz (IEEE 802.11a). The FSSs are initially analyzed through simulations performed by commercial software s: Ansoft DesignerTM and HFSSTM. The fractal design methodology is validated by experimental characterization of the built prototypes, using alternatively, different measurement setups, with commercial horn antennas and microstrip monopoles fabricated for low cost measurements

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the globalized world modern telecommunications have assumed key role within the company, causing a large increase in demand for the wireless technology of communication, which has been happening in recent years have greatly increased the number of applications using this technology. Due to this demand, new materials are developed to enable new control mechanisms and propagation of electromagnetic waves. The research to develop new technologies for wireless communication presents a multidisciplinary study that covers from the new geometries for passive antennas, active up to the development of materials for devices that improve the performance at the frequency range of operation. Recently, planar antennas have attracted interest due to their characteristics and advantages when compared with other types of antennas. In the area of mobile communications the need for antennas of this type has become increasingly used, due to intensive development, which needs to operate in multifrequency antennas and broadband. The microstrip antennas have narrow bandwidth due to the dielectric losses generated by irradiation. Another limitation is the degradation of the radiation pattern due to the generation of surface waves in the substrate. Some techniques have been developed to minimize this limitation of bandwidth, such as the study of type materials PBG - Photonic Band Gap, to form the dielectric material. This work has as main objective the development project of a slot resonator with multiple layers and use the type PBG substrate, which carried out the optimization from the numerical analysis and then designed the device initially proposed for the band electromagnetic spectrum between 3-9 GHz, which basically includes the band S to X. Was used as the dielectric material RT/Duroid 5870 and RT/Duroid 6010.LM where both are laminated ceramic-filled PTFE dielectric constants 2.33 and 10.2, respectively. Through an experimental investigation was conducted an analysis of the simulated versus measured by observing the behavior of the radiation characteristics from the height variation of the dielectric multilayer substrates. We also used the LTT method resonators structures rectangular slot with multiple layers of material photonic PBG in order to obtain the resonance frequency and the entire theory involving the electromagnetic parameters of the structure under consideration. xviii The analysis developed in this work was performed using the method LTT - Transverse Transmission Line, in the field of Fourier transform that uses a component propagating in the y direction (transverse to the real direction of propagation z), thus treating the general equations of the fields electric and magnetic and function. The PBG theory is applied to obtain the relative permittivity of the polarizations for the sep photonic composite substrates material. The results are obtained with the commercial software Ansoft HFSS, used for accurate analysis of the electromagnetic behavior of the planar device under study through the Finite Element Method (FEM). Numerical computational results are presented in graphical form in two and three dimensions, playing in the parameters of return loss, frequency of radiation and radiation diagram, radiation efficiency and surface current for the device under study, and have as substrates, photonic materials and had been simulated in an appropriate computational tool. With respect to the planar device design study are presented in the simulated and measured results that show good agreement with measurements made. These results are mainly in the identification of resonance modes and determining the characteristics of the designed device, such as resonant frequency, return loss and radiation pattern

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The telecommunications industry has experienced recent changes, due to increasing quest for access to digital services for data, video and multimedia, especially using the mobile phone networks. Recently in Brazil, mobile operators are upgrading their networks to third generations systems (3G) providing to users broadband services such as video conferencing, Internet, digital TV and more. These new networks that provides mobility and high data rates has allowed the development of new market concepts. Currently the market is focused on the expansion of WiMAX technology, which is gaining increasingly the market for mobile voice and data. In Brazil, the commercial interest for this technology appears to the first award of licenses in the 3.5 GHz band. In February 2003 ANATEL held the 003/2002/SPV-ANATEL bidding, where it offered blocks of frequencies in the range of 3.5 GHz. The enterprises who purchased blocks of frequency were: Embratel, Brazil Telecom (Vant), Grupo Sinos, Neovia and WKVE, each one with operations spread in some regions of Brazil. For this and other wireless communications systems are implemented effectively, many efforts have been invested in attempts to developing simulation methods for coverage prediction that is close to reality as much as possible so that they may become believers and indispensable tools to design wireless communications systems. In this work wasm developed a genetic algorithm (GA's) that is able to optimize the models for predicting propagation loss at applicable frequency range of 3.5 GHz, thus enabling an estimate of the signal closer to reality to avoid significant errors in planning and implementation a system of wireless communication

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Frequency selective surfaces (Frequency Selective Surface - FSS) are often used in various applications in telecommunications. Some of these applications may require that these structures have response with multiple resonance bands. Other applications require that the FSS response have large frequency range, to meet the necessary requirements. FSS to design with these features there are numerous techniques cited in the scientific literature. Thus, the purpose of this paper is to examine some common techniques such as: Overlap of FSS; Elements combined; Elements Elements convolucionados and fractals. And designing multiband FSS and / or broadband selecting simple ways in terms of construction and occupy the smallest possible space, aiming at practical applications. Given these requirements, three projects FSS were performed: a technology applied to IEEE 802.11 a/b/g/n and two projects for application in UWB. In project development, commercial software Ansoft DesignerTM and experimental results were satisfactory was used

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polymer light-emitting devices (PLEDs) with poly(2-methoxy-5-hexyloxy)-p-phenylenevinylene (OC1OC6-PPV) as the emissive layer were studied with an electron injection layer of ionomers consisting of copolymers of styrene and methylmethacrylate (PS/PMMA) with 3, 6 and 8 mol% degree of sulfonation. The ionomers were able to form very thin films over the emissive layer, with less than 30 nm. Additionally, the presence of ion pairs of ionomer suppresses the tendency toward dewetting of the thin film of ionomer (similar to 10 nm) which can cause malfunction of the device. The effect of the ionomers was investigated as a function of the ion content. The devices performance, characterized by their current density and luminance intensity versus voltage, showed a remarkable increase with the ionomer layer up to 6 mol% of ionic groups, decreasing after that for the 8 mol% ionomer device. The study of the impedance spectroscopy in the frequency range from 0.1 to 10(6) Hz showed that the injection phenomena dominate over the transport in the electroluminescent polymer bulk. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)