899 resultados para Fractional Calculus Operators
Resumo:
The goal of this study is to analyze the dynamical properties of financial data series from nineteen worldwide stock market indices (SMI) during the period 1995–2009. SMI reveal a complex behavior that can be explored since it is available a considerable volume of data. In this paper is applied the window Fourier transform and methods of fractional calculus. The results reveal classification patterns typical of fractional order systems.
Resumo:
This paper applied MDS and Fourier transform to analyze different periods of the business cycle. With such purpose, four important stock market indexes (Dow Jones, Nasdaq, NYSE, S&P500) were studied over time. The analysis under the lens of the Fourier transform showed that the indexes have characteristics similar to those of fractional noise. By the other side, the analysis under the MDS lens identified patterns in the stock markets specific to each economic expansion period. Although the identification of patterns characteristic to each expansion period is interesting to practitioners (even if only in a posteriori fashion), further research should explore the meaning of such regularities and target to find a method to estimate future crisis.
Resumo:
The goal of this study is the analysis of the dynamical properties of financial data series from worldwide stock market indices. We analyze the Dow Jones Industrial Average ( ∧ DJI) and the NASDAQ Composite ( ∧ IXIC) indexes at a daily time horizon. The methods and algorithms that have been explored for description of physical phenomena become an effective background, and even inspiration, for very productive methods used in the analysis of economical data. We start by applying the classical concepts of signal analysis, Fourier transform, and methods of fractional calculus. In a second phase we adopt a pseudo phase plane approach.
Resumo:
Fractional order modeling of biological systems has received significant interest in the research community. Since the fractal geometry is characterized by a recurrent structure, the self-similar branching arrangement of the airways makes the respiratory system an ideal candidate for the application of fractional calculus theory. To demonstrate the link between the recurrence of the respiratory tree and the appearance of a fractional-order model, we develop an anatomically consistent representation of the respiratory system. This model is capable of simulating the mechanical properties of the lungs and we compare the model output with in vivo measurements of the respiratory input impedance collected in 20 healthy subjects. This paper provides further proof of the underlying fractal geometry of the human lungs, and the consequent appearance of constant-phase behavior in the total respiratory impedance.
Resumo:
This paper analyzes the dynamical properties of systems with backlash and impact phenomena based on the describing function method. It is shown that this type of nonlinearity can be analyzed in the perspective of the fractional calculus theory. The fractional dynamics is compared with that of standard models.
Resumo:
This paper studies the dynamics of foot–ground interaction in hexapod locomotion systems. For that objective the robot motion is characterized in terms of several locomotion variables and the ground is modelled through a non-linear spring-dashpot system, with parameters based on the studies of soil mechanics. Moreover, it is adopted an algorithm with foot-force feedback to control the robot locomotion. A set of model-based experiments reveals the influence of the locomotion velocity on the foot–ground transfer function, which presents complex-order dynamics.
Resumo:
Recently simple limiting functions establishing upper and lower bounds on the Mittag-Leffler function were found. This paper follows those expressions to design an efficient algorithm for the approximate calculation of expressions usual in fractional-order control systems. The numerical experiments demonstrate the superior efficiency of the proposed method.
Resumo:
Recently simple limiting functions establishing upper and lower bounds on the Mittag-Leffler function were found. This paper follows those expressions to design an efficient algorithm for the approximate calculation of expressions usual in fractional-order control systems. The numerical experiments demonstrate the superior efficiency of the proposed method.
Resumo:
Esta tese de dissertação tem como principal objetivo a implementação de controladores fracionários utilizando diapositivos analógicos FPAA (Field Programable Analog Array). Embora estes dispositivos já não sejam um tecnologia recente, não tiveram grande aceitação comercial, daí não ter sido grande a sua evolução nesta última década. Mas para a elaboração de alguns circuitos analógicos, nomeadamente filtros, amplificadores e mesmo controladores PID (Proporcional-Integrativo-Derivativo) analógicos torna-se numa ferramenta que pode facilitar o projeto e implementação. Para a realização deste estudo, utilizou-se a placa de desenvolvimento da Anadigm AN231K04-DVLP3 juntamente com o software disponibilizado pela mesma empresa, o AnadigmDesigner2. Para a simulação e observação dos resultados foi utilizada a DAQ (Data Acquisition) Hilink da Zelton juntamente com o software Matlab. De forma a testar a implementação dos controladores fracionários nas FPAA foram realizados alguns circuitos no software e enviados para a FPAA comparando os resultados obtidos na simulação com os visualizados no osciloscópio. Por último foi projetado um controlador PIlDm recorrendo aos métodos de aproximação inteira descritos neste documento implementados na FPAA recorrendo ao uso de filtros de primeira e segunda ordem.
Resumo:
Pós-graduação em Biometria - IBB
Resumo:
Pós-graduação em Biometria - IBB
Resumo:
This work aims to study several diffusive regimes, especially Brownian motion. We deal with problems involving anomalous diffusion using the method of fractional derivatives and fractional integrals. We introduce concepts of fractional calculus and apply it to the generalized Langevin equation. Through the fractional Laplace transform we calculate the values of diffusion coefficients for two super diffusive cases, verifying the validity of the method
Resumo:
The new result presented here is a theorem involving series in the three-parameter Mittag-Le er function. As a by-product, we recover some known results and discuss corollaries. As an application, we obtain the solution of a fractional di erential equation associated with a RLC electrical circuit in a closed form, in terms of the two-parameter Mittag-Le er function.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
El estudio sísmico en los últimos 50 años y el análisis del comportamiento dinámico del suelo revelan que el comportamiento del suelo es altamente no lineal e histéretico incluso para pequeñas deformaciones. El comportamiento no lineal del suelo durante un evento sísmico tiene un papel predominante en el análisis de la respuesta de sitio. Los análisis unidimensionales de la respuesta sísmica del suelo son a menudo realizados utilizando procedimientos lineales equivalentes, que requieren generalmente pocos parámetros conocidos. Los análisis de respuesta de sitio no lineal tienen el potencial para simular con mayor precisión el comportamiento del suelo, pero su aplicación en la práctica se ha visto limitada debido a la selección de parámetros poco documentadas y poco claras, así como una inadecuada documentación de los beneficios del modelado no lineal en relación al modelado lineal equivalente. En el análisis del suelo, el comportamiento del suelo es aproximado como un sólido Kelvin-Voigt con un módulo de corte elástico y amortiguamiento viscoso. En el análisis lineal y no lineal del suelo se están considerando geometrías y modelos reológicos más complejos. El primero está siendo dirigido por considerar parametrizaciones más ricas del comportamiento linealizado y el segundo mediante el uso de multi-modo de los elementos de resorte-amortiguador con un eventual amortiguador fraccional. El uso del cálculo fraccional está motivado en gran parte por el hecho de que se requieren menos parámetros para lograr la aproximación exacta a los datos experimentales. Basándose en el modelo de Kelvin-Voigt, la viscoelasticidad es revisada desde su formulación más estándar a algunas descripciones más avanzada que implica la amortiguación dependiente de la frecuencia (o viscosidad), analizando los efectos de considerar derivados fraccionarios para representar esas contribuciones viscosas. Vamos a demostrar que tal elección se traduce en modelos más ricos que pueden adaptarse a diferentes limitaciones relacionadas con la potencia disipada, amplitud de la respuesta y el ángulo de fase. Por otra parte, el uso de derivados fraccionarios permite acomodar en paralelo, dentro de un análogo de Kelvin-Voigt generalizado, muchos amortiguadores que contribuyen a aumentar la flexibilidad del modelado para la descripción de los resultados experimentales. Obviamente estos modelos ricos implican muchos parámetros, los asociados con el comportamiento y los relacionados con los derivados fraccionarios. El análisis paramétrico de estos modelos requiere técnicas numéricas eficientemente capaces de simular comportamientos complejos. El método de la Descomposición Propia Generalizada (PGD) es el candidato perfecto para la construcción de este tipo de soluciones paramétricas. Podemos calcular off-line la solución paramétrica para el depósito de suelo, para todos los parámetros del modelo, tan pronto como tales soluciones paramétricas están disponibles, el problema puede ser resuelto en tiempo real, porque no se necesita ningún nuevo cálculo, el solucionador sólo necesita particularizar on-line la solución paramétrica calculada off-line, que aliviará significativamente el procedimiento de solución. En el marco de la PGD, parámetros de los materiales y los diferentes poderes de derivación podrían introducirse como extra-coordenadas en el procedimiento de solución. El cálculo fraccional y el nuevo método de reducción modelo llamado Descomposición Propia Generalizada han sido aplicado en esta tesis tanto al análisis lineal como al análisis no lineal de la respuesta del suelo utilizando un método lineal equivalente. ABSTRACT Studies of earthquakes over the last 50 years and the examination of dynamic soil behavior reveal that soil behavior is highly nonlinear and hysteretic even at small strains. Nonlinear behavior of soils during a seismic event has a predominant role in current site response analysis. One-dimensional seismic ground response analysis are often performed using equivalent-linear procedures, which require few, generally well-known parameters. Nonlinear analyses have the potential to more accurately simulate soil behavior, but their implementation in practice has been limited because of poorly documented and unclear parameter selection, as well as inadequate documentation of the benefits of nonlinear modeling relative to equivalent linear modeling. In soil analysis, soil behaviour is approximated as a Kelvin-Voigt solid with a elastic shear modulus and viscous damping. In linear and nonlinear analysis more complex geometries and more complex rheological models are being considered. The first is being addressed by considering richer parametrizations of the linearized behavior and the second by using multi-mode spring-dashpot elements with eventual fractional damping. The use of fractional calculus is motivated in large part by the fact that fewer parameters are required to achieve accurate approximation of experimental data. Based in Kelvin-Voigt model the viscoelastodynamics is revisited from its most standard formulation to some more advanced description involving frequency-dependent damping (or viscosity), analyzing the effects of considering fractional derivatives for representing such viscous contributions. We will prove that such a choice results in richer models that can accommodate different constraints related to the dissipated power, response amplitude and phase angle. Moreover, the use of fractional derivatives allows to accommodate in parallel, within a generalized Kelvin-Voigt analog, many dashpots that contribute to increase the modeling flexibility for describing experimental findings. Obviously these rich models involve many parameters, the ones associated with the behavior and the ones related to the fractional derivatives. The parametric analysis of all these models require efficient numerical techniques able to simulate complex behaviors. The Proper Generalized Decomposition (PGD) is the perfect candidate for producing such kind of parametric solutions. We can compute off-line the parametric solution for the soil deposit, for all parameter of the model, as soon as such parametric solutions are available, the problem can be solved in real time because no new calculation is needed, the solver only needs particularize on-line the parametric solution calculated off-line, which will alleviate significantly the solution procedure. Within the PGD framework material parameters and the different derivation powers could be introduced as extra-coordinates in the solution procedure. Fractional calculus and the new model reduction method called Proper Generalized Decomposition has been applied in this thesis to the linear analysis and nonlinear soil response analysis using a equivalent linear method.