961 resultados para Forestry machines
Resumo:
ABSTRACT One of the fastest growing sectors in the domestic industry is the forestry, which has contributed significantly to economic development, job creation, income taxes, putting Brazil in a prominent position in the world market. This paper analyzes the evolution of the technological intensity of 12 main products exported by the sector, from 2000 to 2011. For that, utilizes an indicator called PRODY, which allows classifying different products according to their technological intensity or income content and considers the GDP per capita of exporting countries of each product, weighted by its revealed comparative advantage. It can be seen by the results, a continuous growth in all products' technology indicators and their decomposition into income effects, comparative advantage and joint effects, allowed to verify the main causes of this growth. Products with lower PRODY values are those that presented a higher evolution during the period studied. Products of higher processing, and those from pulp and paper industry, had greater technological advances, thanks to a joint effect, while the ones of lower processing, had a technological improvement due to the increase in GDP per capita in exporting countries. Sawn wood was the standout product, being the only one who proved to be dependent of comparative advantage effect, confirming that this industry has been reinventing itself and incorporating, in fact, more technology. This study revealed the importance of technological intensification to generate comparative advantage and be able to stand against international competition.
Resumo:
The knowledge of the spatial variability of noise levels and the build of kriging maps can help the evaluation of the salubrity of environments occupied by agricultural workers. Therefore, the objective of this research was to characterize the spatial variability of the noise level generated by four agricultural machines, using geostatistics, and to verify if the values are within the limits of human comfort. The evaluated machines were: harvester, chainsaw, brushcutter and tractor. The data were collected at the height of the operator's ear and at different distances. Through the results, it was possible to verify that the use of geostatistics, by kriging technique, made it possible to define areas with different levels for the data collected. With exception of the harvester, all of machines presented noise levels above than 85 dB (A) near to the operator, demanding the use of hearing protection.
Resumo:
The theme of the research is the development of the domain of marketing knowledge in the design of agricultural machinery. It is developed throughout the design of agricultural machinery in order to identify the corporate and customers needs and to develop strategies to satisfy these needs. The central problem of the research questions which marketing tools to apply on pre-development process of farm machinery, in order to increase the market value of the products and of the company and, consequently, generate competitive advantage to the manufacturers of agricultural machinery. As methodology, it was developed bibliographical research and multicase study of the development process of agricultural machinery developed by small, medium and large companies and the academy. As a result, a marketing reference model was elaborated for the pre-development stage of agricultural machinery, which outlines the activities, tasks, mechanisms and controls that can be used in strategic planning and in products planning of agricultural machinery manufacturers, contributing to explain the explicit knowledge in the marketing field.
Resumo:
This doctoral thesis presents a study on the development of a liquid-cooled frame salient pole permanent-magnet-exited traction machine for a four-wheel-driven electric car. The emphasis of the thesis is put on a radial flux machine design in order to achieve a light-weight machine structure for traction applications. The design features combine electromagnetic and thermal design methods, because traction machine operation does not have a strict operating point. Arbitrary load cycles and the flexible supply require special attention in the design process. It is shown that accurate modelling of the machine magnetic state is essential for high-performance operation. The saturation effect related to the cross-saturation has to be taken carefully into account in order to achieve the desired operation. Two prototype machines have been designed and built for testing: one totally enclosed machine with a special magnet module pole arrangement and another through-ventilated machine with a more traditional embedded magnet structure. Both structures are built with magnetically salient structures in order to increase the torque production capability with the reluctance torque component. Both machine structures show potential for traction usage. However, the traditional embedded magnet design turns out to be mechanically the more secure one of these two machine options.
Resumo:
The objective of this thesis was to examine the potential of multi-axis solutions in packaging machines produced in Europe. The definition of a multi-axis solution in this study is a construction that uses a common DC bus power supply for different amplifiers running the axes and the intelligence is centralized into one unit. The cost structure of a packaging machine was gained from an automation research, which divided the machines according to automation categories. The automation categories were then further divided into different sub-components by evaluating the ratio of multi-axis solutions compared to other automation components in packaging machines. A global motion control study was used for further information. With the help of the ratio, an estimation of the potential of multi-axis solutions in each country and packaging machine sector was completed. In addition to the research, a specific questionnaire was sent to five companies to gain information about the present situation and possible trends in packaging machinery. The greatest potential markets are in Germany and Italy, which are also the largest producers of packaging machinery in Europe. The greatest growth in the next few years will be seen in Turkey where the annual growth rate equals the general machinery production rate in Asia. The greatest market potential of the Nordic countries is found in Sweden in 35th position on the list. According to the interviews, motion control products in packaging machines will retain their current power levels, as well as the number of axes in the future. Integrated machine safety features together with a universal programming language are the desired attributes of the future. Unlike generally in industry, the energy saving objectives are and will remain insignificant in the packaging industry.
Resumo:
Commercially available haptic interfaces are usable for many purposes. However, as generic devices they are not the most suitable for the control of heavy duty mobile working machines like mining machines, container handling equipment and excavators. Alternative mechanical constructions for a haptic controller are presented and analysed. A virtual reality environment (VRE) was built to test the proposed haptic controller mechanisms. Verification of an electric motor emulating a hydraulic pump in the electro-hydraulic system of a mobile working machine is carried out. A real-time simulator using multi-body-dynamics based software with hardware-in-loop (HIL) setup was used for the tests. Recommendations for further development of a haptic controller and emulator electric motor are given.
Multiple scales analysis of nonlinear oscillations of a portal frame foundation for several machines
Resumo:
An analytical study of the nonlinear vibrations of a multiple machines portal frame foundation is presented. Two unbalanced rotating machines are considered, none of them resonant with the lower natural frequencies of the supporting structure. Their combined frequencies is set in such a way as to excite, due to nonlinear behavior of the frame, either the first anti-symmetrical mode (sway) or the first symmetrical mode. The physical and geometrical characteristics of the frame are chosen to tune the natural frequencies of these two modes into a 1:2 internal resonance. The problem is reduced to a two degrees of freedom model and its nonlinear equations of motions are derived via a Lagrangian approach. Asymptotic perturbation solutions of these equations are obtained via the Multiple Scales Method.
Resumo:
Työssä käydään läpi tukivektorikoneiden teoreettista pohjaa sekä tutkitaan eri parametrien vaikutusta spektridatan luokitteluun.
Resumo:
The power rating of wind turbines is constantly increasing; however, keeping the voltage rating at the low-voltage level results in high kilo-ampere currents. An alternative for increasing the power levels without raising the voltage level is provided by multiphase machines. Multiphase machines are used for instance in ship propulsion systems, aerospace applications, electric vehicles, and in other high-power applications including wind energy conversion systems. A machine model in an appropriate reference frame is required in order to design an efficient control for the electric drive. Modeling of multiphase machines poses a challenge because of the mutual couplings between the phases. Mutual couplings degrade the drive performance unless they are properly considered. In certain multiphase machines there is also a problem of high current harmonics, which are easily generated because of the small current path impedance of the harmonic components. However, multiphase machines provide special characteristics compared with the three-phase counterparts: Multiphase machines have a better fault tolerance, and are thus more robust. In addition, the controlled power can be divided among more inverter legs by increasing the number of phases. Moreover, the torque pulsation can be decreased and the harmonic frequency of the torque ripple increased by an appropriate multiphase configuration. By increasing the number of phases it is also possible to obtain more torque per RMS ampere for the same volume, and thus, increase the power density. In this doctoral thesis, a decoupled d–q model of double-star permanent-magnet (PM) synchronous machines is derived based on the inductance matrix diagonalization. The double-star machine is a special type of multiphase machines. Its armature consists of two three-phase winding sets, which are commonly displaced by 30 electrical degrees. In this study, the displacement angle between the sets is considered a parameter. The diagonalization of the inductance matrix results in a simplified model structure, in which the mutual couplings between the reference frames are eliminated. Moreover, the current harmonics are mapped into a reference frame, in which they can be easily controlled. The work also presents methods to determine the machine inductances by a finite-element analysis and by voltage-source inverters on-site. The derived model is validated by experimental results obtained with an example double-star interior PM (IPM) synchronous machine having the sets displaced by 30 electrical degrees. The derived transformation, and consequently, the decoupled d–q machine model, are shown to model the behavior of an actual machine with an acceptable accuracy. Thus, the proposed model is suitable to be used for the model-based control design of electric drives consisting of double-star IPM synchronous machines.
Resumo:
Demand for increased energy efficiency has put an immense need for novel energy efficient systems. Electrical machines are considered as a much matured technology. Further improvement in this technology needs of finding new material to incorporate in electrical machines. Progress of carbon nanotubes research over the latest decade can open a new horizon in this aspect. Commonly known as ‘magic material’, carbon nanotubes (CNTs) have promising material properties that can change considerably the course of electrical machine design. It is believed that winding material based on carbon nanotubes create the biggest hope for a giant leap of modern technology and energy efficient systems. Though carbon nanotubes (CNTs) have shown amazing properties theoretically and practically during the latest 20 years, to the best knowledge of the author, no research has been carried out to find the future possibilities of utilizing carbon nanotubes as conductors in rotating electrical machines. In this thesis, the possibilities of utilizing carbon nanotubes in electrical machines have been studied. The design changes of electrical machine upon using carbon nanotubes instead of copper have been discussed vividly. A roadmap for this carbon nanotube winding machine has been discussed from synthesis, manufacturing and operational points of view.
Resumo:
In the design of electrical machines, efficiency improvements have become very important. However, there are at least two significant cases in which the compactness of electrical machines is critical and the tolerance of extremely high losses is valued: vehicle traction, where very high torque density is desired at least temporarily; and direct-drive wind turbine generators, whose mass should be acceptably low. As ever higher torque density and ever more compact electrical machines are developed for these purposes, thermal issues, i.e. avoidance of over-temperatures and damage in conditions of high heat losses, are becoming of utmost importance. The excessive temperatures of critical machine components, such as insulation and permanent magnets, easily cause failures of the whole electrical equipment. In electrical machines with excitation systems based on permanent magnets, special attention must be paid to the rotor temperature because of the temperature-sensitive properties of permanent magnets. The allowable temperature of NdFeB magnets is usually significantly less than 150 ˚C. The practical problem is that the part of the machine where the permanent magnets are located should stay cooler than the copper windings, which can easily tolerate temperatures of 155 ˚C or 180 ˚C. Therefore, new cooling solutions should be developed in order to cool permanent magnet electrical machines with high torque density and because of it with high concentrated losses in stators. In this doctoral dissertation, direct and indirect liquid cooling techniques for permanent magnet synchronous electrical machines (PMSM) with high torque density are presented and discussed. The aim of this research is to analyse thermal behaviours of the machines using the most applicable and accurate thermal analysis methods and to propose new, practical machine designs based on these analyses. The Computational Fluid Dynamics (CFD) thermal simulations of the heat transfer inside the machines and lumped parameter thermal network (LPTN) simulations both presented herein are used for the analyses. Detailed descriptions of the simulated thermal models are also presented. Most of the theoretical considerations and simulations have been verified via experimental measurements on a copper tooth-coil (motorette) and on various prototypes of electrical machines. The indirect liquid cooling systems of a 100 kW axial flux (AF) PMSM and a 110 kW radial flux (RF) PMSM are analysed here by means of simplified 3D CFD conjugate thermal models of the parts of both machines. In terms of results, a significant temperature drop of 40 ̊C in the stator winding and 28 ̊C in the rotor of the AF PMSM was achieved with the addition of highly thermally conductive materials into the machine: copper bars inserted in the teeth, and potting material around the end windings. In the RF PMSM, the potting material resulted in a temperature decrease of 6 ̊C in the stator winding, and in a decrease of 10 ̊C in the rotor embedded-permanentmagnets. Two types of unique direct liquid cooling systems for low power machines are analysed herein to demonstrate the effectiveness of the cooling systems in conditions of highly concentrated heat losses. LPTN analysis and CFD thermal analysis (the latter being particularly useful for unique design) were applied to simulate the temperature distribution within the machine models. Oil-immersion cooling provided good cooling capability for a 26.6 kW PMSM of a hybrid vehicle. A direct liquid cooling system for the copper winding with inner stainless steel tubes was designed for an 8 MW directdrive PM synchronous generator. The design principles of this cooling solution are described in detail in this thesis. The thermal analyses demonstrate that the stator winding and the rotor magnet temperatures are kept significantly below their critical temperatures with demineralized water flow. A comparison study of the coolant agents indicates that propylene glycol is more effective than ethylene glycol in arctic conditions.