988 resultados para Folding coadjuvant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The calculated folding thermodynamics of a simple off-lattice three-helix-bundle protein model under equilibrium conditions shows the experimentally observed protein transitions: a collapse transition, a disordered-to-ordered globule transition, a globule to native-state transition, and the transition from the active native state to a frozen inactive state. The cooperativity and physical origin of the various transitions are explored with a single “optimization” parameter and characterized with the Lindemann criterion for liquid versus solid-state dynamics. Below the folding temperature, the model has a simple free energy surface with a single basin near the native state; the surface is similar to that calculated from a simulation of the same three-helix-bundle protein with an all-atom representation [Boczko, E. M. & Brooks III, C. L. (1995) Science 269, 393–396].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polypeptides targeted to the yeast endoplasmic reticulum (ER) posttranslationally are thought to be kept in the cytoplasm in an unfolded state by Hsp70 chaperones before translocation. We show here that Escherichia coli β-lactamase associated with Hsp70, but adopted a native-like conformation before translocation in living Saccharomyces cerevisiae cells. β-Lactamase is a globular trypsin-resistant molecule in authentic form. For these studies, it was linked to the C terminus of a yeast polypeptide Hsp150Δ, which conferred posttranslational translocation and provided sites for O-glycosylation. We devised conditions to retard translocation of Hsp150Δ-β-lactamase. This enabled us to show by protease protection assays that an unglycosylated precursor was associated with the cytoplasmic surface of isolated microsomes, whereas a glycosylated form resided inside the vesicles. Both proteins were trypsin resistant and had similar β-lactamase activity and Km values for nitrocefin. The enzymatically active cytoplasmic intermediate could be chased into the ER, followed by secretion of the activity to the medium. Productive folding in the cytoplasm occurred in the absence of disulfide formation, whereas in the ER lumen, proper folding required oxidation of the sulfhydryls. This suggests that the polypeptide was refolded in the ER and consequently, at least partially unfolded for translocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immunoglobulin (Ig) molecule is composed of two identical heavy chains and two identical light chains (H2L2). Transport of this heteromeric complex is dependent on the correct assembly of the component parts, which is controlled, in part, by the association of incompletely assembled Ig heavy chains with the endoplasmic reticulum (ER) chaperone, BiP. Although other heavy chain-constant domains interact transiently with BiP, in the absence of light chain synthesis, BiP binds stably to the first constant domain (CH1) of the heavy chain, causing it to be retained in the ER. Using a simplified two-domain Ig heavy chain (VH-CH1), we have determined why BiP remains bound to free heavy chains and how light chains facilitate their transport. We found that in the absence of light chain expression, the CH1 domain neither folds nor forms its intradomain disulfide bond and therefore remains a substrate for BiP. In vivo, light chains are required to facilitate both the folding of the CH1 domain and the release of BiP. In contrast, the addition of ATP to isolated BiP–heavy chain complexes in vitro causes the release of BiP and allows the CH1 domain to fold in the absence of light chains. Therefore, light chains are not intrinsically essential for CH1 domain folding, but play a critical role in removing BiP from the CH1 domain, thereby allowing it to fold and Ig assembly to proceed. These data suggest that the assembly of multimeric protein complexes in the ER is not strictly dependent on the proper folding of individual subunits; rather, assembly can drive the complete folding of protein subunits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the isolation of fission yeast homologues of tubulin-folding cofactors B (Alp11) and E (Alp21), which are essential for cell viability and the maintenance of microtubules. Alp11B contains the glycine-rich motif (the CLIP-170 domain) involved in microtubular functions, whereas, unlike mammalian cofactor E, Alp21E does not. Both mammalian and yeast cofactor E, however, do contain leucine-rich repeats. Immunoprecipitation analysis shows that Alp11B interacts with both α-tubulin and Alp21E, but not with the cofactor D homologue Alp1, whereas Alp21E also interacts with Alp1D. The cellular amount of α-tubulin is decreased in both alp1 and alp11 mutants. Overproduction of Alp11B results in cell lethality and the disappearance of microtubules, which is rescued by co-overproduction of α-tubulin. Both full-length Alp11B and the C-terminal third containing the CLIP-170 domain localize in the cytoplasm, and this domain is required for efficient binding to α-tubulin. Deletion of alp11 is suppressed by multicopy plasmids containing either alp21+ or alp1+, whereas alp21 deletion is rescued by overexpression of alp1+ but not alp11+. Finally, the alp1 mutant is not complemented by either alp11+ or alp21+. The results suggest that cofactors operate in a linear pathway (Alp11B-Alp21E-Alp1D), each with distinct roles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochrome c552 from Hydrogenobacter thermophilus, a thermophilic bacterium, has been converted into a b type cytochrome, after mutagenesis of both heme-binding cysteines to alanine and expression in the cytoplasm of Escherichia coli. The b type variant is less stable, with the guanidine hydrochloride unfolding midpoint occurring at a concentration 2 M lower than for the wild-type protein. The reduction potential is 75 mV lower than that of the recombinant wild-type protein. The heme can be removed from the b type variant, thus generating an apo protein that has, according to circular dichroism spectroscopy, an α-helical content different from that of the holo b type protein. The latter is readily reformed in vitro by addition of heme to the apo protein. This reforming suggests that previously observed assembly of cytochrome c552, which has the typical class I cytochrome c fold, in the E. coli cytoplasm is a consequence of spontaneous thioether bond formation after binding of heme to a prefolded polypeptide. These observations have implications for the general problem of c type cytochrome biogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report single-molecule folding studies of a small, single-domain protein, chymotrypsin inhibitor 2 (CI2). CI2 is an excellent model system for protein folding studies and has been extensively studied, both experimentally (at the ensemble level) and theoretically. Conformationally assisted ligation methodology was used to synthesize the proteins and site-specifically label them with donor and acceptor dyes. Folded and denatured subpopulations were observed by fluorescence resonance energy transfer (FRET) measurements on freely diffusing single protein molecules. Properties of these subpopulations were directly monitored as a function of guanidinium chloride concentration. It is shown that new information about different aspects of the protein folding reaction can be extracted from such subpopulation properties. Shifts in the mean transfer efficiencies are discussed, FRET efficiency distributions are translated into potentials, and denaturation curves are directly plotted from the areas of the FRET peaks. Changes in stability caused by mutation also are measured by comparing pseudo wild-type CI2 with a destabilized mutant (K17G). Current limitations and future possibilities and prospects for single-pair FRET protein folding investigations are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transmembrane subunit of the Glc transporter (IICBGlc), which mediates uptake and concomitant phosphorylation of glucose, spans the membrane eight times. Variants of IICBGlc with the native N and C termini joined and new N and C termini in the periplasmic and cytoplasmic surface loops were expressed in Escherichia coli. In vivo transport/in vitro phosphotransferase activities of the circularly permuted variants with the termini in the periplasmic loops 1 to 4 were 35/58, 32/37, 0/3, and 0/0% of wild type, respectively. The activities of the variants with the termini in the cytoplasmic loops 1 to 3 were 0/25, 0/4 and 24/70, respectively. Fusion of alkaline phosphatase to the periplasmic C termini stabilized membrane integration and increased uptake and/or phosphorylation activities. These results suggest that internal signal anchor and stop transfer sequences can function as N-terminal signal sequences in a circularly permuted α-helical bundle protein and that the orientation of transmembrane segments is determined by the amino acid sequence and not by the sequential appearance during translation. Of the four IICBGlc variants with new termini in periplasmic loops, only the one with the discontinuity in loop 4 is inactive. The sequences of loop 4 and of the adjacent TM7 and TM8 are conserved in all phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system transporters of the glucose family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GroEL is an allosteric protein that facilitates protein folding in an ATP-dependent manner. Herein, the relationship between cooperative ATP binding by GroEL and the kinetics of GroE-assisted folding of two substrates with different GroES dependence, mouse dihydrofolate reductase (mDHFR) and mitochondrial malate dehydrogenase, is examined by using cooperativity mutants of GroEL. Strong intra-ring positive cooperativity in ATP binding by GroEL decreases the rate of GroEL-assisted mDHFR folding owing to a slow rate of the ATP-induced transition from the protein-acceptor state to the protein-release state. Inter-ring negative cooperativity in ATP binding by GroEL is found to affect the kinetic partitioning of mDHFR, but not of mitochondrial malate dehydrogenase, between folding in solution and folding in the cavity underneath GroES. Our results show that protein folding by this “two-stroke motor” is coupled to cooperative ATP binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I attempt to reconcile apparently conflicting factors and mechanisms that have been proposed to determine the rate constant for two-state folding of small proteins, on the basis of general features of the structures of transition states. Φ-Value analysis implies a transition state for folding that resembles an expanded and distorted native structure, which is built around an extended nucleus. The nucleus is composed predominantly of elements of partly or well-formed native secondary structure that are stabilized by local and long-range tertiary interactions. These long-range interactions give rise to connecting loops, frequently containing the native loops that are poorly structured. I derive an equation that relates differences in the contact order of a protein to changes in the length of linking loops, which, in turn, is directly related to the unfavorable free energy of the loops in the transition state. Kinetic data on loop extension mutants of CI2 and α-spectrin SH3 domain fit the equation qualitatively. The rate of folding depends primarily on the interactions that directly stabilize the nucleus, especially those in native-like secondary structure and those resulting from the entropy loss from the connecting loops, which vary with contact order. This partitioning of energy accounts for the success of some algorithms that predict folding rates, because they use these principles either explicitly or implicitly. The extended nucleus model thus unifies the observations of rate depending on both stability and topology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The small all-β protein tendamistat folds and unfolds with two-state kinetics. We determined the volume changes associated with the folding process by performing kinetic and equilibrium measurements at variable pressure between 0.1 and 100 MPa (1 to 1,000 bar). GdmCl-induced equilibrium unfolding transitions reveal that the volume of the native state is increased by 41.4 ± 2.0 cm3/mol relative to the unfolded state. This value is virtually independent of denaturant concentration. The use of a high-pressure stopped-flow instrument enabled us to measure the activation volumes for the refolding (ΔVf0‡) and unfolding reaction (ΔVu0‡) over a broad range of GdmCl concentrations. The volume of the transition state is 60% native-like (ΔVf0‡ = 25.0 ± 1.2 cm3/mol) in the absence of denaturant, indicating partial solvent accessibility of the core residues. The volume of the transition state increases linearly with denaturant concentration and exceeds the volume of the native state above 6 M GdmCl. This result argues for a largely desolvated transition state with packing deficiencies at high denaturant concentrations and shows that the structure of the transition state depends strongly on the experimental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The disulfide bond between Cys-110 and Cys-187 in the intradiscal domain is required for correct folding in vivo and function of mammalian rhodopsin. Misfolding in rhodopsin, characterized by the loss of ability to bind 11-cis-retinal, has been shown to be caused by an intradiscal disulfide bond different from the above native disulfide bond. Further, naturally occurring single mutations of the intradiscal cysteines (C110F, C110Y, and C187Y) are associated with retinitis pigmentosa (RP). To elucidate further the role of every one of the three intradiscal cysteines, mutants containing single-cysteine replacements by alanine residues and the above three RP mutants have been studied. We find that C110A, C110F, and C110Y all form a disulfide bond between C185 and C187 and cause loss of retinal binding. C185A allows the formation of a C110–C187 disulfide bond, with wild-type-like rhodopsin phenotype. C187A forms a disulfide bond between C110 and C185 and binds retinal, and the pigment formed has markedly altered bleaching behavior. However, the opsin from the RP mutant C187Y forms no rhodopsin chromophore.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conformational space annealing (CSA) method for global optimization has been applied to the 10-55 fragment of the B-domain of staphylococcal protein A (protein A) and to a 75-residue protein, apo calbindin D9K (PDB ID code 1CLB), by using the UNRES off-lattice united-residue force field. Although the potential was not calibrated with these two proteins, the native-like structures were found among the low-energy conformations, without the use of threading or secondary-structure predictions. This is because the CSA method can find many distinct families of low-energy conformations. Starting from random conformations, the CSA method found that there are two families of low-energy conformations for each of the two proteins, the native-like fold and its mirror image. The CSA method converged to the same low-energy folds in all cases studied, as opposed to other optimization methods. It appears that the CSA method with the UNRES force field, which is based on the thermodynamic hypothesis, can be used in prediction of protein structures in real time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of experiments that probe folding of individual protein domains uses mechanical stretching to cause the transition. We show how stretching forces can be incorporated in lattice models of folding. For fast folding proteins, the analysis suggests a complex relation between the force dependence and the reaction coordinate for folding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly nonexponential folding kinetics in aqueous solution have been observed during temperature jump-induced refolding of two proteins, yeast phosphoglycerate kinase and a ubiquitin mutant. The observations are most easily interpreted in terms of downhill folding, which posits a heterogeneous ensemble of structures en route to the folded state. The data are also reconciled with exponential kinetics measured under different experimental conditions and with titration experiments indicating cooperative folding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To test a different approach to understanding the relationship between the sequence of part of a protein and its conformation in the overall folded structure, the amino acid sequence corresponding to an α-helix of T4 lysozyme was duplicated in tandem. The presence of such a sequence repeat provides the protein with “choices” during folding. The mutant protein folds with almost wild-type stability, is active, and crystallizes in two different space groups, one isomorphous with wild type and the other with two molecules in the asymmetric unit. The fold of the mutant is essentially the same in all cases, showing that the inserted segment has a well-defined structure. More than half of the inserted residues are themselves helical and extend the helix present in the wild-type protein. Participation of additional duplicated residues in this helix would have required major disruption of the parent structure. The results clearly show that the residues within the duplicated sequence tend to maintain a helical conformation even though the packing interactions with the remainder of the protein are different from those of the original helix. It supports the hypothesis that the structures of individual α-helices are determined predominantly by the nature of the amino acids within the helix, rather than the structural environment provided by the rest of the protein.