933 resultados para Flue gases
Resumo:
We study the entanglement of two impurity qubits immersed in a Bose-Einstein condensate (BEC) reservoir. This open quantum system model allows for interpolation between a common dephasing scenario and an independent dephasing scenario by modifying the wavelength of the superlattice superposed to the BEC, and how this influences the dynamical properties of the impurities. We demonstrate the existence of rich dynamics corresponding to different values of reservoir parameters, including phenomena such as entanglement trapping, revivals of entanglement, and entanglement generation. In the spirit of reservoir engineering, we present the optimal BEC parameters for entanglement generation and trapping, showing the key role of the ultracold-gas interactions. Copyright (C) EPLA, 2013
Resumo:
We study the dynamics of two strongly interacting bosons with an additional impurity atom trapped in a harmonic potential. Using exact numerical diagonalization we are able to fully explore the dynamical evolution when the interaction between the two distinct species is suddenly switched on (quenched). We examine the behavior of the densities, the entanglement, the Loschmidt echo, and the spectral function for a large range of interspecies interactions and find that even in such small systems evidence of Anderson's orthogonality catastrophe can be witnessed.
Resumo:
This article examines acid-base balance and the interpretation of arterial blood gases (ABG). The
article begins with a brief revision of related physiology, followed by a description of the primary
disorders associated with acid-base imbalance. The normal ranges and the significance of
abnormal ABG results are explored. The article concludes by providing an easy to follow four-step
guide to ABG interpretation with practice examples presented in the CPD task section.
Resumo:
We propose a feasible experimental scheme to direct measure heat and work in cold atomic setups. The method is based on a recent proposal which shows that work is a positive operator valued measure (POVM). In the present contribution, we demonstrate that the interaction between the atoms and the light polarization of a probe laser allows us to implement such POVM. In this way the work done on or extracted from the atoms after a given process is encoded in the light quadrature that can be measured with a standard homodyne detection. The protocol allows one to verify fluctuation theorems and study properties of the non-unitary dynamics of a given thermodynamic process.
Resumo:
The precise knowledge of the temperature of an ultracold lattice gas simulating a strongly correlated
system is a question of both fundamental and technological importance. Here, we address such
question by combining tools from quantum metrology together with the study of the quantum
correlations embedded in the system at finite temperatures. Within this frame we examine the spin-
1 2 XY chain, first estimating, by means of the quantum Fisher information, the lowest attainable
bound on the temperature precision. We then address the estimation of the temperature of the sample
from the analysis of correlations using a quantum non demolishing Faraday spectroscopy method.
Remarkably, our results show that the collective quantum correlations can become optimal
observables to accurately estimate the temperature of our model in a given range of temperatures.
Resumo:
The renewed concern in assessing risks and consequences from technological hazards in industrial and urban areas continues emphasizing the development of local-scale consequence analysis (CA) modelling tools able to predict shortterm pollution episodes and exposure effects on humans and the environment in case of accident with hazardous gases (hazmat). In this context, the main objective of this thesis is the development and validation of the EFfects of Released Hazardous gAses (EFRHA) model. This modelling tool is designed to simulate the outflow and atmospheric dispersion of heavy and passive hazmat gases in complex and build-up areas, and to estimate the exposure consequences of short-term pollution episodes in accordance to regulatory/safety threshold limits. Five main modules comprising up-to-date methods constitute the model: meteorological, terrain, source term, dispersion, and effects modules. Different initial physical states accident scenarios can be examined. Considered the main core of the developed tool, the dispersion module comprises a shallow layer modelling approach capable to account the main influence of obstacles during the hazmat gas dispersion phenomena. Model validation includes qualitative and quantitative analyses of main outputs by the comparison of modelled results against measurements and/or modelled databases. The preliminary analysis of meteorological and source term modules against modelled outputs from extensively validated models shows the consistent description of ambient conditions and the variation of the hazmat gas release. Dispersion is compared against measurements observations in obstructed and unobstructed areas for different release and dispersion scenarios. From the performance validation exercise, acceptable agreement was obtained, showing the reasonable numerical representation of measured features. In general, quality metrics are within or close to the acceptance limits recommended for ‘non-CFD models’, demonstrating its capability to reasonably predict hazmat gases accidental release and atmospheric dispersion in industrial and urban areas. EFRHA model was also applied to a particular case study, the Estarreja Chemical Complex (ECC), for a set of accidental release scenarios within a CA scope. The results show the magnitude of potential effects on the surrounding populated area and influence of the type of accident and the environment on the main outputs. Overall the present thesis shows that EFRHA model can be used as a straightforward tool to support CA studies in the scope of training and planning, but also, to support decision and emergency response in case of hazmat gases accidental release in industrial and built-up areas.
Resumo:
Dissertação mest., Gestão Sustentável dos Espaços Rurais, Universidade do Algarve, 2008
Resumo:
Prestando atenção e observando o que se passa à nossa volta, conclui-se que as condições climáticas da Terra estão a mudar rapidamente. As alterações ambientais que impomos ao nosso planeta em resultado da atividade humana nas suas múltiplas áreas de ação, obrigam-nos a tomar consciência da necessidade na adoção de atitudes e formas de vida mais condizentes com a preservação do ambiente, agindo no respeito pelos processos naturais de renovação ambiental. A resposta a este problema tem-se traduzido na aplicação de um conjunto de legislações e práticas com o objetivo de promover uma redução significativa das emissões de gases com efeito de estufa. Entre outros, os gases fluorados são dos mais relevantes gases com efeito de estufa, conforme identificados no Protocolo de Quioto. Esta tese tem como objetivo mostrar as ações que os técnicos de AVAC e refrigeração necessitam de executar para a sua certificação, para operar com equipamentos fixos de refrigeração que contenham gases fluorados com efeito de estufa, bem como procedimentos e cuidados necessários no respeito e conformidade com a legislação em vigor. Foi construída uma plataforma experimental com um equipamento de refrigeração para a prática e manuseamento do gás fluorados com a eventualidade de desenvolver sessões de formação.
Resumo:
The Beckman Helium Discharge Detector has been found to be sensitive to the fixed gases oxygen, nitrogen, and hydrogen at detection levels 10-100 times more sensitive than possible with a Bow-Mac Thermal Conductivity Detector. Detection levels o~ approximately 1.9 E-4 ~ v/v oxygen, 3.1 E-4 ~ v/v nitrogen, and 3.0 E-3 ~ v/v hydrogen are estimated. Response of the Helium Discharge Detector was not linear, but is useable for quantitation over limited ranges of concentration using suitably prepared working standards. Cleanliness of the detector discharge electrodes and purity of the helium carrier and discharge gas were found to be critical to the operation of the detector. Higher sensitivities of the Helium Discharge Detector may be possible by the design and installation of a sensitive, solid-state electrometer.
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Química Analítica Biomédica) UANL
Resumo:
Tesis (Maestría en la Enseñanza de la Ciencia con Especialidad en Química) UANL