922 resultados para Flow Through Capillary Tubes
Resumo:
A quasi-cylindrical approximation is used to analyse the axisymmetric swirling flow of a liquid with a hollow air core in the chamber of a pressure swirl atomizer. The liquid is injected into the chamber with an azimuthal velocity component through a number of slots at the periphery of one end of the chamber, and flows out as an anular sheet through a central orifice at the other end, following a conical convergence of the chamber wall. An effective inlet condition is used to model the effects of the slots and the boundary layer that develops at the nearby endwall of the chamber. An analysis is presented of the structure of the liquid sheet at the end of the exit orifice, where the flow becomes critical in the sense that upstream propagation of long-wave perturbations ceases to be possible. This nalysis leads to a boundary condition at the end of the orifice that is an extension of the condition of maximum flux used with irrotational models of the flow. As is well known, the radial pressure gradient induced by the swirling flow in the bulk of the chamber causes the overpressure that drives the liquid towards the exit orifice, and also leads to Ekman pumping in the boundary layers of reduced azimuthal velocity at the convergent wall of the chamber and at the wall opposite to the exit orifice. The numerical results confirm the important role played by the boundary layers. They make the thickness of the liquid sheet at the end of the orifice larger than predicted by rrotational models, and at the same time tend to decrease the overpressure required to pass a given flow rate through the chamber, because the large axial velocity in the boundary layers takes care of part of the flow rate. The thickness of the boundary layers increases when the atomizer constant (the inverse of a swirl number, proportional to the flow rate scaled with the radius of the exit orifice and the circulation around the air core) decreases. A minimum value of this parameter is found below which the layer of reduced azimuthal velocity around the air core prevents the pressure from increasing and steadily driving the flow through the exit orifice. The effects of other parameters not accounted for by irrotational models are also analysed in terms of their influence on the boundary layers.
Resumo:
Fluid flow and fabric compaction during vacuum assisted resin infusion (VARI) of composite materials was simulated using a level set-based approach. Fluid infusion through the fiber preform was modeled using Darcy’s equations for the fluid flow through a porous media. The stress partition between the fluid and the fiber bed was included by means of Terzaghi’s effective stress theory. Tracking the fluid front during infusion was introduced by means of the level set method. The resulting partial differential equations for the fluid infusion and the evolution of flow front were discretized and solved approximately using the finite differences method with a uniform grid discretization of the spatial domain. The model results were validated against uniaxial VARI experiments through an [0]8 E-glass plain woven preform. The physical parameters of the model were also independently measured. The model results (in terms of the fabric thickness, pressure and fluid front evolution during filling) were in good agreement with the numerical simulations, showing the potential of the level set method to simulate resin infusion
Resumo:
This study shows the air flow behavior through the geometry of a freight truck inside a AF6109 wind tunnel with the purpose to predict the speed, pressure and turbulence fields made by the air flow, to decrease the aerodynamic resistance, to calculate the dragging coefficient, to evaluate the aerodynamics of the geometry of the prototype using the CFD technique and to compare the results of the simulation with the results obtained experimentally with the “PETER 739 HAULER” scaled freight truck model located on the floor of the test chamber. The Geometry went through a numerical simulation process using the CFX 5,7. The obtained results showed the behavior of the air flow through the test chamber, and also it showed the variations of speed and pressure at the exit of the chamber and the calculations of the coefficient and the dragging force on the geometry of the freight truck. The evaluation of the aerodynamics showed that the aerodynamic deflector is a device that helped the reduction the dragging produced in a significant way by the air. Furthermore, the dragging coefficient and force on the prototype freight truck could be estimated establishing an incomplete similarity.
Resumo:
This paper deals with the prediction of pressure and velocity fields on the 2415-3S airfoil which will be used for and unmanned aerial vehicle with internal propulsion system and in this way analyze the air flow through an internal duct of the airfoil using computational fluid dynamics. The main objective is to evaluate the effect of the internal air flow past the airfoil and how this affects the aerodynamic performance by means of lift and drag forces. For this purpose, three different designs of the internal duct were studied; starting from the base 2415-3S airfoil developed in previous investigation, basing on the hypothesis of decreasing the flow separation produced when the propulsive airflow merges the external flow, and in this way obtaining the best configuration. For that purpose, an exhaustive study of the mesh sensitivity was performed. It was used a non-structured mesh since the computational domain is tridimensional and complex. The selected mesh contains approximately 12.5 million elements. Both the computational domain and the numerical solution were made with commercial CAD and CFD software respectively. Air, incompressible and steady was analyzed. The boundary conditions are in concordance with experimental setup in the AF 6109 wind tunnel. The k-ε model is utilized to describe the turbulent flow process as followed in references. Results allowed obtaining pressure and velocity contours as well as lift and drag coefficients and also the location of separation and reattachment regions in some cases for zero degrees of angle of attack on the internal and external surfaces of the airfoil. Finally, the selection of the configuration with the best aerodynamic performance was made, selecting the option without curved baffles.
Resumo:
An inflatable drill-string packer was used at Site 839 to measure the bulk in-situ permeability within basalts cored in Hole 839B. The packer was inflated at two depths, 398.2 and 326.9 mbsf; all on-board information indicated that the packer mechanically closed off the borehole, although apparently the packer hydraulically sealed the borehole only at 398.2 mbsf. Two pulse tests were run at each depth, two constant-rate injection tests were run at the first set, and four were run at the second. Of these, only the constant-rate injection tests at the first set yielded a permeability, calculated as ranging from 1 to 5 * 10**-12 m**2. Pulse tests and constant-rate injection tests for the second set did not yield valid data. The measured permeability is an upper limit; if the packer leaked during the experiments, the basalt would be less permeable. In comparison, permeabilities measured at other Deep Sea Drilling Project and Ocean Drilling Program sites in pillow basalts and flows similar to those measured in Hole 839B are mainly about 10**-13 to 10**-14 m**2. Thus, if our results are valid, the basalts at Site 839 are more permeable than ocean-floor basalts investigated elsewhere. Based on other supporting evidence, we consider these results to be a valid measure of the permeability of the basalts. Temperature data and the geochemical and geotechnical properties of the drilled sediments all indicate that the site is strongly affected by fluid flow. The heat flow is very much less than expected in young oceanic basalts, probably a result of rapid fluid circulation through the crust. The geochemistry of pore fluids is similar to that of seawater, indicating seawater flow through the sediments, and sediments are uniformly underconsolidated for their burial depth, again indicating probable fluid flow. The basalts are highly vesicular. However, the vesicularity can only account for part of the average porosity measured on the neutron porosity well log; the remainder of the measured porosity is likely present as voids and fractures within and between thin-bedded basalts. Core samples, together with porosity, density, and resistivity well-log data show locations where the basalt section is thin bedded and probably has from 15% to 35% void and fracture porosity. Thus, the measured permeability seems reasonable with respect to the high measured porosity. Much of the fluid flow at Site 839 could be directed through highly porous and permeable zones within and between the basalt flows and in the sediment layer just above the basalt. Thus, the permeability measurements give an indication of where and how fluid flow may occur within the oceanic crust of the Lau Basin.
Prediction of slurry transport in SAG mills using SPH fluid flow in a dynamic DEM based porous media
Resumo:
DEM modelling of the motion of coarse fractions of the charge inside SAG mills has now been well established for more than a decade. In these models the effect of slurry has broadly been ignored due to its complexity. Smoothed particle hydrodynamics (SPH) provides a particle based method for modelling complex free surface fluid flows and is well suited to modelling fluid flow in mills. Previous modelling has demonstrated the powerful ability of SPH to capture dynamic fluid flow effects such as lifters crashing into slurry pools, fluid draining from lifters, flow through grates and pulp lifter discharge. However, all these examples were limited by the ability to model only the slurry in the mill without the charge. In this paper, we represent the charge as a dynamic porous media through which the SPH fluid is then able to flow. The porous media properties (specifically the spatial distribution of porosity and velocity) are predicted by time averaging the mill charge predicted using a large scale DEM model. This allows prediction of transient and steady state slurry distributions in the mill and allows its variation with operating parameters, slurry viscosity and slurry volume, to be explored. (C) 2006 Published by Elsevier Ltd.
Resumo:
Simulations of a complete reflected shock tunnel facility have been performed with the aim of providing a better understanding of the flow through these facilities. In particular, the analysis is focused on the premature contamination of the test flow with the driver gas. The axisymmetric simulations model the full geometry of the shock tunnel and incorporate an iris-based model of the primary diaphragm rupture mechanics, an ideal secondary diaphragm and account for turbulence in the shock tube boundary layer with the Baldwin-Lomax eddy viscosity model. Two operating conditions were examined: one resulting in an over-tailored mode of operation and the other resulting in approximately tailored operation. The accuracy of the simulations is assessed through comparison with experimental measurements of static pressure, pitot pressure and stagnation temperature. It is shown that the widely-accepted driver gas contamination mechanism in which driver gas 'jets' along the walls through action of the bifurcated foot of the reflected shock, does not directly transport the driver gas to the nozzle at these conditions. Instead, driver gas laden vortices are generated by the bifurcated reflected shock. These vortices prevent jetting of the driver gas along the walls and convect driver gas away from the shock tube wall and downstream into the nozzle. Additional vorticity generated by the interaction of the reflected shock and the contact surface enhances the process in the over-tailored case. However, the basic mechanism appears to operate in a similar way for both the over-tailored and the approximately tailored conditions.
Resumo:
This paper describes effluent flow dynamics within a septic absorption system and the prediction of flow through the biomat and sub-biomat zone. Using soil hydraulic properties in a one dimensional model we demonstrate how soil hydraulic properties interact with biomat resistances to determine long-term acceptance rate (LTAR). The LTAR is a key parameter used in the Australian and New Zealand Standard AS1547:2000 to calculate the area of trench required to ensure trenches are not overloaded. Results show that several orders of magnitude variation in saturated hydraulic conductivity (Ks) collapse to a one order of magnitude variation in LTAR. These results are calculated from a model using basic flow theory, allowing LTAR to be estimated for any combination of biomat resistance and soil hydraulic properties. To increase the reliability of prediction of septic trench hydrology, HYDRUS 2D was used to model two dimensional flow. For more permeable soils, the exfiltration zone above sidewall biomat growth is shown to be a key pathway for excess effluent flow.
Resumo:
The verification of information flow properties of security devices is difficult because it involves the analysis of schematic diagrams, artwork, embedded software, etc. In addition, a typical security device has many modes, partial information flow, and needs to be fault tolerant. We propose a new approach to the verification of such devices based upon checking abstract information flow properties expressed as graphs. This approach has been implemented in software, and successfully used to find possible paths of information flow through security devices.
Resumo:
This work is concerned with the nature of liquid flow across industrial sieve trays operating in the spray, mixed, and the emulsified flow regimes. In order to overcome the practical difficulties of removing many samples from a commercial tray, the mass transfer process was investigated in an air water simulator column by heat transfer analogy. The temperature of the warm water was measured by many thermocouples as the water flowed across the single pass 1.2 m diameter sieve tray. The thermocouples were linked to a mini computer for the storage of the data. The temperature data were then transferred to a main frame computer to generate temperature profiles - analogous to concentration profiles. A comprehensive study of the existing tray efficiency models was carried out using computerised numerical solutions. The calculated results were compared with experimental results published by the Fractionation Research Incorporation (FRl) and the existing models did not show any agreement with the experimental results. Only the Porter and Lockett model showed a reasonable agreement with the experimental results for cenain tray efficiency values. A rectangular active section tray was constructed and tested to establish the channelling effect and the result of its effect on circular tray designs. The developed flow patterns showed predominantly flat profiles and some indication of significant liquid flow through the central region of the tray. This comfirms that the rectangular tray configuration might not be a satisfactory solution for liquid maldistribution on sieve trays. For a typical industrial tray the flow of liquid as it crosses the tray from the inlet to the outlet weir could be affected by the mixing of liquid by the eddy, momentum and the weir shape in the axial or the transverse direction or both. Conventional U-shape profiles were developed when the operating conditions were such that the froth dispersion was in the mixed regime, with good liquid temperature distribution while in the spray regime. For the 12.5 mm hole diameter tray the constant temperature profiles were found to be in the axial direction while in the spray regime and in the transverse direction for the 4.5 mm hole tray. It was observed that the extent of the liquid stagnant zones at the sides of the tray depended on the tray hole diameter and was larger for the 4.5 mm hole tray. The liquid hold-up results show a high liquid hold-up at the areas of the tray with low liquid temperatures, this supports the doubts about the assumptions of constant point efficiency across an operating tray. Liquid flow over the outlet weir showed more liquid flow at the centre of the tray at high liquid loading with low liquid flow at both ends of the weir. The calculated results of the point and tray efficiency model showed a general increase in the calculated point and tray efficiencies with an increase in the weir loading, as the flow regime changed from the spray to the mixed regime the point and the tray efficiencies increased from approximately 30 to 80%.Through the mixed flow regime the efficiencies were found to remain fairly constant, and as the operating conditions were changed to maintain an emulsified flow regime there was a decrease in the resulting efficiencies. The results of the estimated coefficient of mixing for the small and large hole diameter trays show that the extent of liquid mixing on an operating tray generally increased with increasing capacity factor, but decreased with increasing weir loads. This demonstrates that above certain weir loads, the effect of eddy diffusion mechanism on the process of liquid mixing on an operating tray to be negligible.
Resumo:
A combination of experimental methods was applied at a clogged, horizontal subsurface flow (HSSF) municipal wastewater tertiary treatment wetland (TW) in the UK, to quantify the extent of surface and subsurface clogging which had resulted in undesirable surface flow. The three dimensional hydraulic conductivity profile was determined, using a purpose made device which recreates the constant head permeameter test in-situ. The hydrodynamic pathways were investigated by performing dye tracing tests with Rhodamine WT and a novel multi-channel, data-logging, flow through Fluorimeter which allows synchronous measurements to be taken from a matrix of sampling points. Hydraulic conductivity varied in all planes, with the lowest measurement of 0.1 md1 corresponding to the surface layer at the inlet, and the maximum measurement of 1550 md1 located at a 0.4m depth at the outlet. According to dye tracing results, the region where the overland flow ceased received five times the average flow, which then vertically short-circuited below the rhizosphere. The tracer break-through curve obtained from the outlet showed that this preferential flow-path accounted for approximately 80% of the flow overall and arrived 8 h before a distinctly separate secondary flow-path. The overall volumetric efficiencyof the clogged system was 71% and the hydrology was simulated using a dual-path, dead-zone storage model. It is concluded that uneven inlet distribution, continuous surface loading and high rhizosphere resistance is responsible for the clog formation observed in this system. The average inlet hydraulic conductivity was 2 md1, suggesting that current European design guidelines, which predict that the system will reach an equilibrium hydraulic conductivity of 86 md1, do not adequately describe the hydrology of mature systems.
Resumo:
The electrostatic model for osmotic flow across a porous membrane in our previous study (Akinaga et al. 2008)" was extended to include the streaming potential, for solutes and pores of like charge and fixed surface charge densities. The magnitude of the streaming potential was determined to satisfy zero current condition along the pore axis. It was found that the streaming potential affects the velocity profiles of the pressure driven flow as well as the osmotic flow through the pore, and decreases their flow rates, particularly in the case of large Debye length relative to the pore radius, whereas it has little effect on the reflection coefficients of spherical solutes through cylindrical pores.
Resumo:
This study presents water flow (WF) into soil from several pitchers buried in the soil up to their neck and filled with water,under natural atmospheric conditions for a period of two years. Variation in daily WF into soil indicated a direct correlation with moisture deficit (MD) in atmosphere. WF increases linearly with MD for non rainy days. WF without hydraulic head through all pots varied in the order air>soil>water. Base line flow in water with respect to air was < 5%. WF for pots with hydraulic head was also in the order air>soil>water, but with significant increase in WF. Hydraulic conductivity Ks was in the order air>soil>water.Ks in water was independent of MD, whereas for air and soil, Ks increased with MD. Thus total WF is partially under hydraulic head and partly due to pull effect through capillary pores on pot wall either due to MD in air or prevailing soil water tension in soil.