915 resultados para Fishes - Ecology - Victoria
Resumo:
The white cloud mountain minnow Tanichthys albonubes Lin is an endemic species to southern China and the genus has two species, Tanichthys albonubes Lin and Tanichthys micagemmae Freyhof et Herder. The distribution range of T. albonubes Lin and T. micagemmae is very narrow and only found in the mountain brooks of Baiyunshan Mountain (White Cloud Mountain), Huaxian Country and the vicinity of Guangzhou in Guangdong Province and Halong, Quang Ninh Province, Vietnam respectively. The wild populations of this fish had already been on the verge of extinction when Shu-Yan Lin first discovered it in 1932 at the Baiyunshan Mountain. It was believed to be extinct in the wild because there were no reports of this fish in the wild since 1980. In September 2003, a small and isolated population of the fish was discovered in a mountain puddle in the north vicinity of Guangzhou. Additional studies are needed to determine the survival and propagation of the released fish. The protection of their natural habitat should be implemented.
Resumo:
Hypothesis: In parasites that use hosts for offspring development, adults may base oviposition decisions on a range of host traits related either to host quality or the co-evolutionary relationship between parasite and host. We examined whether host quality or co-evolutionary dynamics drive the use of hosts in the bitterling-mussel relationship. Organisms: Six species of bitterling fish (Acheilognathinae) and eight species of freshwater mussels (Unionidae, Corbiculidae) that are used by bitterling for oviposition. Site of experiments: Experimental tanks in Wuhan, China, at the site of the natural distribution of the studied species. Methods: Three experiments that controlled for host accessibility and interspecific interactions were conducted to identify host preferences among bitterling fishes and their mussel hosts. We started with a broad interspecific comparison. We then tested bitterling behavioural choices, their temporal stability, and mussel host ejection behaviour of the eggs of generalist and specialist bitterling species. Finally, we measured host mussel quality based on respiration rate and used published studies on mussel gill structure to infer mussel suitability as hosts for bitterling eggs. Results: We found significant interspecific differences among bitterling species in their use of mussel hosts. Bitterling species varied in their level of host specificity and identity of preferred hosts. Host preferences were flexible even among apparently specialized species and fishes switched their preferences adaptively when the quality of individuals of preferred host species declined. Mussels varied considerably in their response to oviposition through egg ejections. Host preference by a generalist bitterling species correlated positively with host quality measured as the efficiency of the mussel gills to extract oxygen from inhaled water. Host ability to eject bitterling eggs correlated positively with their relative respiration rate, probably due to a higher velocity of water circulating in the mussel gill chamber.
Resumo:
In an eight-month enclosure experiment in Meiliang Bay of Lake Taihu, a shallow subtropical lake in China, silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) collectively reduced cyanobacterial biomass. Microcystin concentration was six times higher in the 0.35 km(2) control enclosure (without fish) than in two similar-sized enclosures that had been stocked with both carp species. Furthermore, toxic Microcystis spp. increased microcystin production when exposed to silver carp and bighead carp.
Resumo:
Long-term changes In the crustacean zooplankton community (calanoid and cyclopoid copepods and cladocerans) were studied in Lake Donghu, a shallow and eutrophic Chinese lake. This lake had been earlier stocked with two pump Alter-feeding Ashes, silver carp (Hypopthalmichthys molitrix) and bighead carp (Aristichthys nobilis). During the 1950s and the mid-1980s, the ratio of copepods to cladocerans was relatively stable but showed a general increase thereafter. From the early-1980s to the 1990s, calanoid/cyclopoid ratios decreased obviously. In the 1990s, Cyclops vicinus, Diaphanosoma brachyurum, and Moina micrura were dominant the abundance of C. vicinus and M. micrura increased significantly; and D, brachyurum showed a substantial decrease. The study shows that under extremely high pressure of Ash predation, the species which could recover rapidly from fish predation would be the most likely to survive and increase their numbers.
Resumo:
The ecological interaction of brown algae are important as these macroalgae are common and often keystone members in many benthic marine communities.This review highlights their chemical interactions,particularly with potential herbivores,but also with fouling oranganisms,with potential pathogens,with each other as gametes,and with their microenvironments when they are spores.Phlorotannins,which are phenolic compounds unique to brown algae,have been studied hesvily in many of these respects and sre highlightes here.This includes recent controversy about their roles as defences against herbivory,as well as new understanding of their roles in primary cellular functions that may,in many instances,be more important than ,and which at least have to be considered in convert with,any possible ecological functions.Brown algae have also been useful models for testing theoties about the evolution of and ecological constraints on chemical defence.Furthermore,their mocroscopic motile gametes and spores have the ability to react to their chemical environments behavirourally.
Resumo:
Diversity of particle-attached and free-living marine bacteria in Victoria Harbor, Hong Kong, and its adjacent coastal and estuarial environments was investigated using DNA fingerprinting and clone library analysis. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes showed that bacterial communities in three stations of Victoria Harbor were similar, but differed from those in adjacent coastal and estuarine stations. Particle-attached and free-living bacterial community composition differed in the Victoria Harbor area. DNA sequencing of 28 bands from DGGE gel showed Alphaproteobacteria was the most abundant group, followed by the Bacteroidetes, and other Proteobacteria. Bacterial species richness (number of DGGE bands) differed among stations and populations (particle-attached and free-living; bottom and surface). BIOENV analysis indicated that the concentrations of suspended solids were the major contributing parameter for the spatial variation of total bacterial community structure. Samples from representative stations were selected for clone library (548 clones) construction and their phylogenetic distributions were similar to those of sequences from DGGE. Approximately 80% of clones were affiliated to Proteobacteria, Bacteroidetes and Cyanobacteria. The possible influences of dynamic pollution and hydrological conditions in the Victoria Harbor area on the particle-attached and free-living bacterial community structures were discussed.
Resumo:
Diversity of particle-attached and free-living marine bacteria in Victoria Harbor, Hong Kong, and its adjacent coastal and estuarial environments was investigated using DNA fingerprinting and clone library analysis. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes showed that bacterial communities in three stations of Victoria Harbor were similar, but differed from those in adjacent coastal and estuarine stations. Particle-attached and free-living bacterial community composition differed in the Victoria Harbor area. DNA sequencing of 28 bands from DGGE gel showed Alphaproteobacteria was the most abundant group, followed by the Bacteroidetes, and other Proteobacteria. Bacterial species richness (number of DGGE bands) differed among stations and populations (particle-attached and free-living; bottom and surface). BIOENV analysis indicated that the concentrations of suspended solids were the major contributing parameter for the spatial variation of total bacterial community structure. Samples from representative stations were selected for clone library (548 clones) construction and their phylogenetic distributions were similar to those of sequences from DGGE. Approximately 80% of clones were affiliated to Proteobacteria, Bacteroidetes and Cyanobacteria. The possible influences of dynamic pollution and hydrological conditions in the Victoria Harbor area on the particle-attached and free-living bacterial community structures were discussed.
Resumo:
Species in Liangzi Lake were clustered into four trophic groups: Hemiramphus kurumeus and Hemiculter bleekeri bleekeri fed predominantly on terrestrial insects; Carassius auratus auratus and Abbottina rivularis on non-animal food; Hypseleotris swinhonis, Ctenogobius giurinus, Pseudorasbora parva and Toxabramis swinhonis on cladocerans or copepods; Culterichthys erythropterus on decapod shrimps. Gut length, mouth width, mouth height, gill raker length and gill raker spacing, varied widely among species. With the exception of three species pairs (H. swinhonis, C. glurinus; C. erythropterus, H. kurumeus; T. swinhonis, H. bleekeri bleekeri), principal components analysis of morphological variables revealed over-dispersion of species. Canonical correspondence analysis of dietary and morphological data revealed five significant dietary-morphological correlations. The first three roots explained > 85% of the total variance. The first root reflected mainly the relationship of gut length to non-animal feud, with an increase in gut length associated with an increase in non-animal food. The second root was influenced strongly by the relationship of the gill raker spacing to consumption of copepods, with an increase in gill raker spacing associated positively with copepods in the diet. The third root was influenced by the relationship of mouth gape to consumption of fish and decapod shrimps, with an increase in mouth gape associated with more fish and decapod shrimps in the diet. These significant dietary-morphological relationships supported the eco-morphological hypotheses that fish morphology influence food use, and morphological variation is important in determining ecological segregation of co-existing fish species. (C) 2001 The Fisheries Society of the British Isles.
Resumo:
Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical introduction experiment where Trinidadian guppies (Poecilia reticulata) were relocated from a site with predatory fishes to a site lacking predators. To assess the trophic consequences of predator release, we linked individual morphology (cranial, jaw, and body) to foraging performance. Our results show that predator release caused an increase in guppy density and a "sharpening" of guppy trophic traits, which enhanced food consumption rates. Predator release appears to have shifted natural selection away from predator escape ability and towards resource acquisition ability. Related diet and mesocosm studies suggest that this shift enhances the impact of guppies on lower trophic levels in a fashion nuanced by the omnivorous feeding ecology of the species. We conclude that extirpation of top predators may commonly select for enhanced feeding performance in prey, with important cascading consequences for communities and ecosystems.
Resumo:
Interactions between natural selection and environmental change are well recognized and sit at the core of ecology and evolutionary biology. Reciprocal interactions between ecology and evolution, eco-evolutionary feedbacks, are less well studied, even though they may be critical for understanding the evolution of biological diversity, the structure of communities and the function of ecosystems. Eco-evolutionary feedbacks require that populations alter their environment (niche construction) and that those changes in the environment feed back to influence the subsequent evolution of the population. There is strong evidence that organisms influence their environment through predation, nutrient excretion and habitat modification, and that populations evolve in response to changes in their environment at time-scales congruent with ecological change (contemporary evolution). Here, we outline how the niche construction and contemporary evolution interact to alter the direction of evolution and the structure and function of communities and ecosystems. We then present five empirical systems that highlight important characteristics of eco-evolutionary feedbacks: rotifer-algae chemostats; alewife-zooplankton interactions in lakes; guppy life-history evolution and nutrient cycling in streams; avian seed predators and plants; and tree leaf chemistry and soil processes. The alewife-zooplankton system provides the most complete evidence for eco-evolutionary feedbacks, but other systems highlight the potential for eco-evolutionary feedbacks in a wide variety of natural systems.
Resumo:
Climate change has already altered the distribution of marine fishes. Future predictions of fish distributions and catches based on bioclimate envelope models are available, but to date they have not considered interspecific interactions. We address this by combining the species-based Dynamic Bioclimate Envelope Model (DBEM) with a size-based trophic model. The new approach provides spatially and temporally resolved predictions of changes in species' size, abundance and catch potential that account for the effects of ecological interactions. Predicted latitudinal shifts are, on average, reduced by 20% when species interactions are incorporated, compared to DBEM predictions, with pelagic species showing the greatest reductions. Goodness-of-fit of biomass data from fish stock assessments in the North Atlantic between 1991 and 2003 is improved slightly by including species interactions. The differences between predictions from the two models may be relatively modest because, at the North Atlantic basin scale, (i) predators and competitors may respond to climate change together; (ii) existing parameterization of the DBEM might implicitly incorporate trophic interactions; and/or (iii) trophic interactions might not be the main driver of responses to climate. Future analyses using ecologically explicit models and data will improve understanding of the effects of inter-specific interactions on responses to climate change, and better inform managers about plausible ecological and fishery consequences of a changing environment.
Resumo:
Hypothesis: Ecological specialization facilitates co-existence of Coregonus spp. in Lake Stechlin. A difference in trophic ecology is the dominant means by which the species are ecologically segregated.