993 resultados para Finite-Temperature
Resumo:
We use series expansion methods to calculate the dispersion relation of the one-magnon excitations for the spin-(1)/(2) triangular-lattice nearest-neighbor Heisenberg antiferromagnet above a three-sublattice ordered ground state. Several striking features are observed compared to the classical (large-S) spin-wave spectra. Whereas, at low energies the dispersion is only weakly renormalized by quantum fluctuations, significant anomalies are observed at high energies. In particular, we find rotonlike minima at special wave vectors and strong downward renormalization in large parts of the Brillouin zone, leading to very flat or dispersionless modes. We present detailed comparison of our calculated excitation energies in the Brillouin zone with the spin-wave dispersion to order 1/S calculated recently by Starykh, Chubukov, and Abanov [Phys. Rev. B74, 180403(R) (2006)]. We find many common features but also some quantitative and qualitative differences. We show that at temperatures as low as 0.1J the thermally excited rotons make a significant contribution to the entropy. Consequently, unlike for the square lattice model, a nonlinear sigma model description of the finite-temperature properties is only applicable at temperatures < 0.1J. Finally, we review recent NMR measurements on the organic compound kappa-(BEDT-TTF)(2)Cu-2(CN)(3). We argue that these are inconsistent with long-range order and a description of the low-energy excitations in terms of interacting magnons, and that therefore a Heisenberg model with only nearest-neighbor exchange does not offer an adequate description of this material.
Resumo:
We investigate the performance of error-correcting codes, where the code word comprises products of K bits selected from the original message and decoding is carried out utilizing a connectivity tensor with C connections per index. Shannon's bound for the channel capacity is recovered for large K and zero temperature when the code rate K/C is finite. Close to optimal error-correcting capability is obtained for finite K and C. We examine the finite-temperature case to assess the use of simulated annealing for decoding and extend the analysis to accommodate other types of noisy channels.
Resumo:
We propose a method to determine the critical noise level for decoding Gallager type low density parity check error correcting codes. The method is based on the magnetization enumerator (¸M), rather than on the weight enumerator (¸W) presented recently in the information theory literature. The interpretation of our method is appealingly simple, and the relation between the different decoding schemes such as typical pairs decoding, MAP, and finite temperature decoding (MPM) becomes clear. Our results are more optimistic than those derived via the methods of information theory and are in excellent agreement with recent results from another statistical physics approach.
Resumo:
We determine the critical noise level for decoding low density parity check error correcting codes based on the magnetization enumerator , rather than on the weight enumerator employed in the information theory literature. The interpretation of our method is appealingly simple, and the relation between the different decoding schemes such as typical pairs decoding, MAP, and finite temperature decoding (MPM) becomes clear. In addition, our analysis provides an explanation for the difference in performance between MN and Gallager codes. Our results are more optimistic than those derived via the methods of information theory and are in excellent agreement with recent results from another statistical physics approach.
Resumo:
We investigate the behaviour of the mutual friction force in finite temperature quantum turbulence in 4He, paying particular attention to the role of quantized vortex reconnections. Through the use of the vortex filament model, we produce three experimentally relevant types of vortex tangles in steady-state conditions, and examine through statistical analysis, how local properties of the tangle influence the mutual friction force. Finally, by monitoring reconnection events, we present evidence to indicate that vortex reconnections are the dominant mechanism for producing areas of high curvature and velocity leading to regions of high mutual friction, particularly for homogeneous and isotropic vortex tangles.
Resumo:
We use a functional integral formalism developed earlier for the pure Luttinger liquid (LL) to find an exact representation for the electron Green function of the LL in the presence of a single backscattering impurity in the low-temperature limit. This allows us to reproduce results (well known from the bosonization techniques) for the suppression of the electron local density of states (LDOS) at the position of the impurity and for the Friedel oscillations at finite temperature. In addition, we have extracted from the exact representation an analytic dependence of LDOS on the distance from the impurity and shown how it crosses over to that for the pure LL.
Resumo:
We determine the critical noise level for decoding low-density parity check error-correcting codes based on the magnetization enumerator (M), rather than on the weight enumerator (W) employed in the information theory literature. The interpretation of our method is appealingly simple, and the relation between the different decoding schemes such as typical pairs decoding, MAP, and finite temperature decoding (MPM) becomes clear. In addition, our analysis provides an explanation for the difference in performance between MN and Gallager codes. Our results are more optimistic than those derived using the methods of information theory and are in excellent agreement with recent results from another statistical physics approach.
Resumo:
We perform numerical simulations of finite temperature quantum turbulence produced through thermal counterflow in superfluid 4He, using the vortex filament model. We investigate the effects of solid boundaries along one of the Cartesian directions, assuming a laminar normal fluid with a Poiseuille velocity profile, whilst varying the temperature and the normal fluid velocity. We analyze the distribution of the quantized vortices, reconnection rates, and quantized vorticity production as a function of the wall-normal direction. We find that the quantized vortex lines tend to concentrate close to the solid boundaries with their position depending only on temperature and not on the counterflow velocity. We offer an explanation of this phenomenon by considering the balance of two competing effects, namely the rate of turbulent diffusion of an isotropic tangle near the boundaries and the rate of quantized vorticity production at the center. Moreover, this yields the observed scaling of the position of the peak vortex line density with the mutual friction parameter. Finally, we provide evidence that upon the transition from laminar to turbulent normal fluid flow, there is a dramatic increase in the homogeneity of the tangle, which could be used as an indirect measure of the transition to turbulence in the normal fluid component for experiments.
Resumo:
Einstein’s equations with negative cosmological constant possess the so-called anti de Sitter space, AdSd+1, as one of its solutions. We will later refer to this space as to the "bulk". The holographic principle states that quantum gravity in the AdSd+1 space can be encoded by a d−dimensional quantum field theory on the boundary of AdSd+1 space, invariant under conformal transformations, a CFTd. In the most famous example, the precise statement is the duality of the type IIB string theory in the space AdS5 × S 5 and the 4−dimensional N = 4 supersymmetric Yang-Mills theory. Another example is provided by a relation between Einstein’s equations in the bulk and hydrodynamic equations describing the effective theory on the boundary, the so-called fluid/gravity correspondence. An extension of the "AdS/CFT duality"for the CFT’s with boundary was proposed by Takayanagi, which was dubbed the AdS/BCFT correspondence. The boundary of a CFT extends to the bulk and restricts a region of the AdSd+1. Neumann conditions imposed on the extension of the boundary yield a dynamic equation that determines the shape of the extension. From the perspective of fluid/gravity correspondence, the shape of the Neumann boundary, and the geometry of the bulk is sourced by the energy-momentum tensor Tµν of a fluid residing on this boundary. Clarifying the relation of the Takayanagi’s proposal to the fluid/gravity correspondence, we will study the consistence of the AdS/BCFT with finite temperature CFT’s, or equivalently black hole geometries in the bulk.
Resumo:
The Sunyaev-Zel'dovich (SZ) effect is a spectral distortion of the cosmic microwave background as observed through the hot plasma in galaxy clusters. This distortion is a decrement in the CMB intensity for λ > 1.3 mm, an increment at shorter wavelengths, and small again by λ ~ 250 μm. As part of the Herschel Lensing Survey (HLS) we have mapped 1E0657–56 (the Bullet cluster) with SPIRE with bands centered at 250, 350 and 500 μm and have detected the SZ effect at the two longest wavelengths. The measured SZ effect increment central intensities are ΔI_0 = 0.097 ± 0.019 MJy sr^-1 at 350 μm and ΔI_0 = 0.268 ± 0.031 MJy sr^-1 at 500 μm, consistent with the SZ effect spectrum derived from previous measurements at 2 mm. No other diffuse emission is detected. The presence of the finite temperature SZ effect correction is preferred by the SPIRE data at a significance of 2.1σ, opening the possibility that the relativistic SZ effect correction can be constrained by SPIRE in a sample of clusters. The results presented here have important ramifications for both sub-mm measurements of galaxy clusters and blank field surveys with SPIRE.
Resumo:
We study the phase diagram of the double exchange model, with antiferromagnetic interactions, in a cubic lattice both at zero and finite temperature. There is a rich variety of magnetic phases, combined with regions where phase separation takes place. We identify phases, intrinsic to the cubic lattice, which are stable for realistic values of the interactions and dopings. Some of these phases break chiral symmetry, leading to unusual features.
Resumo:
In 1949, P. W. Forsbergh Jr. reported spontaneous spatial ordering in the birefringence patterns seen in flux-grown BaTiO3 crystals [1], under the transmission polarized light microscope [2]. Stunningly regular square-net arrays were often only found within a finite temperature window and could be induced on both heating and cooling, suggesting genuine thermodynamic stability. At the time, Forsbergh rationalized the patterns to have resulted from the impingement of ferroelastic domains, creating a complex tessellation of variously shaped domain packets. However, evidence for the intricate microstructural arrangement proposed by Forsbergh has never been found. Moreover, no robust thermodynamic argument has been presented to explain the region of thermal stability, its occurrence just below the Curie Temperature and the apparent increase in entropy associated with the loss of the Forsbergh pattern on cooling. As a result, despite decades of research on ferroelectrics, this ordering phenomenon and its thermodynamic origin have remained a mystery. In this paper, we re-examine the microstructure of flux-grown BaTiO3 crystals, which show Forsbergh birefringence patterns. Given an absence of any obvious arrays of domain polyhedra, or even regular shapes of domain packets, we suggest an alternative origin for the Forsbergh pattern, in which sheets of orthogonally oriented ferroelastic stripe domains simply overlay one another. We show explicitly that the Forsbergh birefringence pattern occurs if the periodicity of the stripe domains is above a critical value. Moreover, by considering well-established semiempirical models, we show that the significant domain coarsening needed to generate the Forsbergh birefringence is fully expected in a finite window below the Curie Temperature. We hence present a much more straightforward rationalization of the Forsbergh pattern than that originally proposed, in which exotic thermodynamic arguments are unnecessary.
Resumo:
We propose a family of local CSS stabilizer codes as possible candidates for self-correcting quantum memories in 3D. The construction is inspired by the classical Ising model on a Sierpinski carpet fractal, which acts as a classical self-correcting memory. Our models are naturally defined on fractal subsets of a 4D hypercubic lattice with Hausdorff dimension less than 3. Though this does not imply that these models can be realized with local interactions in R3, we also discuss this possibility. The X and Z sectors of the code are dual to one another, and we show that there exists a finite temperature phase transition associated with each of these sectors, providing evidence that the system may robustly store quantum information at finite temperature.
Resumo:
We have simulated, using parallel tempering, the three-dimensional Ising spin glass model with binary couplings in a helicoidal geometry. The largest lattice (L520) has been studied using a dedicated computer (the SUE machine). We have obtained, measuring the correlation length in the critical region, strong evidence for a second-order finite-temperature phase transition, ruling out other possible scenarios like a KosterlitzThouless phase transition. Precise values for the ν and ƞ critical exponents are also presented.
Resumo:
The emergence of hydrodynamic features in off-equilibrium (1 + 1)-dimensional integrable quantum systems has been the object of increasing attention in recent years. In this Master Thesis, we combine Thermodynamic Bethe Ansatz (TBA) techniques for finite-temperature quantum field theories with the Generalized Hydrodynamics (GHD) picture to provide a theoretical and numerical analysis of Zamolodchikov’s staircase model both at thermal equilibrium and in inhomogeneous generalized Gibbs ensembles. The staircase model is a diagonal (1 + 1)-dimensional integrable scattering theory with the remarkable property of roaming between infinitely many critical points when moving along a renormalization group trajectory. Namely, the finite-temperature dimensionless ground-state energy of the system approaches the central charges of all the minimal unitary conformal field theories (CFTs) M_p as the temperature varies. Within the GHD framework we develop a detailed study of the staircase model’s hydrodynamics and compare its quite surprising features to those displayed by a class of non-diagonal massless models flowing between adjacent points in the M_p series. Finally, employing both TBA and GHD techniques, we generalize to higher-spin local and quasi-local conserved charges the results obtained by B. Doyon and D. Bernard [1] for the steady-state energy current in off-equilibrium conformal field theories.