980 resultados para Field-measurements


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Changes of glaciers and snow cover in polar regions affect a wide range of physical and ecosystem processes on land and in the adjacent marine environment. In this study, we investigate the potential of 11-day repeat high-resolution satellite image time series from the TerraSAR-X mission to derive glaciological and hydrological parameters on King George Island, Antarctica during the period Oct/25/2010 to Apr/19/2011. The spatial pattern and temporal evolution of snow cover extent on ice-free areas can be monitored using multi-temporal coherence images. SAR coherence is used to map glacier extent of land terminating glaciers with an average accuracy of 25 m. Multi-temporal SAR color composites identify the position of the late summer snow line at about 220 m above sea level. Glacier surface velocities are obtained from intensity feature-tracking. Surface velocities near the calving front of Fourcade Glacier were up to 1.8 ± 0.01 m/d. Using an intercept theorem based on fundamental geometric principles together with differential GPS field measurements, the ice discharge of Fourcade Glacier was estimated to 20700 ± 5500 m**3/d (corresponding to ~19 ± 5 kt/d). The rapidly changing surface conditions on King George Island and the lack of high-resolution digital elevation models for the region remain restrictions for the applicability of SAR data and the precision of derived products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The amount of solar radiation transmitted through Arctic sea ice is determined by the thickness and physical properties of snow and sea ice. Light transmittance is highly variable in space and time since thickness and physical properties of snow and sea ice are highly heterogeneous on variable time and length scales. We present field measurements of under-ice irradiance along transects under undeformed land-fast sea ice at Barrow, Alaska (March, May, and June 2010). The measurements were performed with a spectral radiometer mounted on a floating under-ice sled. The objective was to quantify the spatial variability of light transmittance through snow and sea ice, and to compare this variability along its seasonal evolution. Along with optical measurements, snow depth, sea ice thickness, and freeboard were recorded, and ice cores were analyzed for chlorophyll a and particulate matter. Our results show that snow cover variability prior to onset of snow melt causes as much relative spatial variability of light transmittance as the contrast of ponded and white ice during summer. Both before and after melt onset, measured transmittances fell in a range from one third to three times the mean value. In addition, we found a twentyfold increase of light transmittance as a result of partial snowmelt, showing the seasonal evolution of transmittance through sea ice far exceeds the spatial variability. However, prior melt onset, light transmittance was time invariant and differences in under-ice irradiance were directly related to the spatial variability of the snow cover.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antarctic terrestrial ecosystems have poorly developed soils and currently experience one of the greatest rates of climate warming on the globe. We investigated the responsiveness of organic matter decomposition in Maritime Antarctic terrestrial ecosystems to climate change, using two study sites in the Antarctic Peninsula region (Anchorage Island, 67°S; Signy Island, 61°S), and contrasted the responses found with those at the cool temperate Falkland Islands (52°S). Our approach consisted of two complementary methods: (1) Laboratory measurements of decomposition at different temperatures (2, 6 and 10 °C) of plant material and soil organic matter from all three locations. (2) Field measurements at all three locations on the decomposition of soil organic matter, plant material and cellulose, both under natural conditions and under experimental warming (about 0.8 °C) achieved using open top chambers. Higher temperatures led to higher organic matter breakdown in the laboratory studies, indicating that decomposition in Maritime Antarctic terrestrial ecosystems is likely to increase with increasing soil temperatures. However, both laboratory and field studies showed that decomposition was more strongly influenced by local substratum characteristics (especially soil N availability) and plant functional type composition than by large-scale temperature differences. The very small responsiveness of organic matter decomposition in the field (experimental temperature increase <1 °C) compared with the laboratory (experimental increases of 4 or 8 °C) shows that substantial warming is required before significant effects can be detected.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article presents a comparison of sediment input by rivers and by coastal erosion into both the Laptev Sea and the Canadian Beaufort Sea (CBS). New data on coastal erosion in the Laptev Sea, which are based on field measurements and remote sensing information, and existing data on coastal erosion in the CBS as well as riverine sediment discharge into both the Laptev Sea and the CBS are included. Strong regional differences in the percentages of coastal erosion and riverine sediment supply are observed. The CBS is dominated by the riverine sediment discharge (64.45210**6 t/a) mainly of the Mackenzie River, which is the largest single source of sediments in the Arctic. Riverine sediment discharge into the Laptev Sea amounts to 24.10210**6 t/a, more than 70% of which are related to the Lena River. In comparison with the CBS, the Laptev Sea coast on average delivers approximately twice as much sediment mass per kilometer, a result of higher erosion rates due to higher cliffs and seasonal ice melting. In the Laptev Sea sediment input by coastal erosion (58.4210**6 t/a) is therefore more important than in the CBS and the ratio between riverine and coastal sediment input amounts to 0.4. Coastal erosion supplying 5.6210**6 t/a is less significant for the sediment budget of the CBS where riverine sediment discharge exceeds coastal sediment input by a factor of ca. 10.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

King George Island is located at the northern tip of the Antarctic Peninsula, which is influenced by maritime climate conditions. The observed mean annual air temperature at sea level is -2.4°C. Thus, the ice cap is regarded as sensitive to changing climatic conditions. Ground-penetrating radar surveys indicate a partly temperate ice cap with an extended water layer at the firn/ice transition of the up to 700 m high ice cap. Measured firn temperatures are close to 0°C at the higher elevations, and they differ considerably from the measured mean annual air temperature. The aim of this paper is to present ice-flow dynamics by means of observations and simulations of the flow velocities. During several field campaigns from 1997/98 to 2008/09, ice surface velocities were derived with repeated differential GPS measurements. Ice velocities vary from 0.7 m/a at the dome to 112.1 m/a along steep slopes. For the western part of the ice cap a three-dimensional diagnostic full-Stokes model was applied to calculate ice flow. Parameters of the numerical model were identified with respect to measured ice surface velocities. The simulations indicate cold ice at higher elevations, while temperate ice at lower elevations is consistent with the observations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present field measurements of air-sea gas exchange by the radon deficit method that were carried out during JASIN 1978 (NE Atlantic) and FGGE 1979 (Equatorial Atlantic). Both experiments comprised repeated deficit measurements at fixed position over periods of days or longer, using a previously descibed precise and fast-acquiaition, automatic radon measuring system. The deficit time series exhibit variations that only partly reflect the expected changes in gas transfer. By evaluating averages over each time series we deduce the following gas transfer velocities (average wind velocity and water temperature in parentheses): JASIN phase 1: 1.6 ± 0.8 m/d (at ~6 m/s, 13°C) JASIN phase 2: 4.3 ± 1.2 m/d (at ~8 m/s, 13°C) FGGE: 1.2 ± 0.4 m/d (at ~5 m/s, 28°C) 0.9 ± 0.4 m/d (at ~7 m/s, 28°C) 1.5 ± 0.4 m/d (at ~7 m/s, 28°C) The large difference betwen the JASIN phase 2 and FGGE values despite quite similare average wind velocity becomes even larger when the values are, however, fully compatible with the range of gas transfer velocities observed in laboratory experiments and the conclusion is suggested that their difference is caused by the highly different wind variability in JASIN and FGGE. We conclude that in gas exchange parameterization it is not sufficinent to consider wind velocity only. A comparison of our observations with laboratory results outlines the range of variations of air-sea gas transfer velocities with wind velocity and sea state. We also reformulate the radon deficit method, in the light of our observed deficit variations, to account explicitely for non-stationary and horizontal inhomogeneity in previous radon work introduces considerable uncertainty in deduced gas transfere velocity. We furthermore discuss the observational rewuirements that have to be met for an adequate exploitation of the radon deficit method, of which an observation area of minimum horizontal inhomogeneity and monitoring of the remaining inhomogeneities are thought to be the most stringent ones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arctic permafrost may be adversely affected by climate change in a number of ways, so that establishing a world-wide monitoring program seems imperative. This thesis evaluates possibilities for permafrost monitoring at the example of a permafrost site on Svalbard, Norway. An energy balance model for permafrost temperatures is developed that evaluates the different components of the surface energy budget in analogy to climate models. The surface energy budget, consisting of radiation components, sensible and latent heat fluxes as well as the ground heat flux, is measured over the course of one year, which has not been accomplished for arctic land areas so far. A considerable small-scale heterogeneity of the summer surface temperature is observed in long-term measurements with a thermal imaging system, which can be reproduced in the energy balance model. The model can also simulate the impact of different snow depths on the soil temperature, that has been documented in field measurements. Furthermore, time series of terrestrial surface temperature measurements are compared to satellite-borne measurements, for which a significant cold-bias is observed during winter. Finally, different possibilities for a world-wide monitoring scheme are assessed. Energy budget models can incorporate different satellite data sets as training data sets for parameter estimation, so that they may constitute an alternative to purely satellite-based schemes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hydraulic effect of asymmetric compound bedforms on tidal currents was assessed from field measurements of flow velocity in the Knudedyb tidal inlet, Denmark. Large asymmetric bedforms with smaller superimposed ones are a common feature of sandy shallow water environments and are known to act as hydraulic roughness elements in dependence with flow direction. The presence of a flow separation zone on the bedform lee was estimated through analysis of the measured velocity directions and the calculation of the flow separation line. The Law of the Wall was used to calculate roughness lengths and shear velocities from log-linear segments sought on transect-averaged and single-location velocity profiles. During the ebb tide a permanent flow separation zone was established over the steep (10-20°) lee sides of the ebb-oriented primary bedforms, which generated a consequent drag on the flow. During the flood, no flow separation was induced by the gentle (2°) lee side of the primary bedforms except over the steepest (10°) part of the lee side where a small separation zone was sometimes observed. As a result, hydraulic roughness was only due to the superimposed bedforms. The parameterized flow separation line was found to underestimate the length of the flow separation zone of the primary bedforms. A better estimation of the presence and shape of the flow separation zone over complex bedforms in a tidal environment still needs to be determined; in particular the relationship between flow separation zone and bedform geometry (asymmetry, relative height or slope of the lee side) is unclear. This would improve the prediction of complex bedform roughness in tidal flows.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extensive glaciological field measurements were carried out on the ice cap Vestfonna as well as on the minor ice body De Geerfonna (Nordaustlandet, Svalbard) within the framework of IPY Kinnvika. Field campaigns were conducted during the period 2007-2010 in spring (April/May) and summer (August). In this study we compile and present snow cover information obtained from 22 snow pits that were dug on Vestfonna during this period. Locations are along two transects on the northwestern, land terminating slope of the ice cap, on its central summit, Ahlmann Summit, and at a set of several other locations in the eastern and northern part of the ice cap. Snow-cover information acquired from four snow pits on adjacent De Geerfonna is also incorporated in this study. Field data are analysed regarding snow stratigraphy, snow density, snow hardness and snow temperature. Results reveal mean snow densities of around 400 kg/m**3 for the snowpack of Vestfonna with no apparent spatial or interannual variability. A distinctly higher value of more than 450 kg/m**3 was obtained for De Geerfonna. A spatial comparison of snow water equivalents above the previous end-of-summer surface serves for obtaining insights into the spatial distribution of snow accumulation across Vestfonna. Altitude was found to be the only significant spatial parameter for controlling snow accumulation across the ice cap.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, modernized shipborne procedures are presented to collect and process above-water radiometry for remote sensing applications. A setup of five radiometers and a bidirectional camera system, which provides panoramic sea surface and sky images, is proposed for the collection of high-resolution radiometric quantities. Images from the camera system can be used to determine sky state and potential glint, whitecaps, or foam contamination. A peak in the observed remote sensing reflectance RRS spectra between 750-780 nm was typically found in spectra with relatively high surface reflected glint (SRG), which suggests this waveband could be a useful SRG indicator. Simplified steps for computing uncertainties in SRG corrected RRS are proposed and discussed. The potential of utilizing "unweighted multimodel averaging," which is the average of four or more common SRG correction models, is examined to determine the best approximation RRS. This best approximation RRS provides an estimate of RRS based on various SRG correction models established using radiative transfer simulations and field investigations. Applying the average RRS provides a measure of the inherent uncertainties or biases that result from a user subjectively choosing any one SRG correction model. Comparisons between inherent and apparent optical property derived observations were used to assess the robustness of the SRG multimodel averaging ap- proach. Correlations among the standard SRG models were completed to determine the degree of association or similarities between the SRG models. Results suggest that the choice of glint models strongly affects derived RRS values and can also influence the blue to green band ratios used for modeling biogeochemical parameters such as for chlorophyll a. The objective here is to present a uniform and traceable methodology for determining ship- borne RRS measurements and its associated errors due to glint correction and to ensure the direct comparability of these measurements in future investigations. We encourage the ocean color community to publish radiometric field measurements with matching and complete metadata in open access repositories.