968 resultados para Field-collected Mosquitos
Resumo:
Results from epidemiologic studies suggest that persons working in occupations with presumed electric and magnetic field (EMF) exposures are at increased risk of brain cancer. This study utilized data from a completed, population-based, interview case-control study of central nervous system (CNS) tumors and employment in the petrochemical industry to test the hypothesis that employment in EMF-related occupations increases CNS tumor risk. A total of 375 male residents of the Texas-Louisiana Gulf Coast Area, age 20 to 79, with primary neuroglial CNS tumors diagnosed during the period 1980-84 were identified. A population-based comparison group of 450 age, race and geographically matched males was selected. Occupational histories and potential risk factor data were collected via personal interviews with study subjects or their next-of-kin.^ Adjusted odds ratios were less than 1.0 for persons ever employed in an electrical occupation (OR = 0.65; 95% CI = 0.40-1.09) or whose usual occupation was electrical (OR = 0.76; 95% CI = 0.33-1.73). Relative risk estimates did not increase significantly as time since first employment or duration of employment increased. Examination of CNS tumor risk by high (OR = 0.80), medium (OR = 0.88) and low (OR = 0.45) exposure categories for persons whose usual occupation was electrical did not indicate a dose-response pattern. In addition, the mean age of exposed cases was not significantly younger than that for unexposed cases. Analysis of risk by probability of exposure to EMFs showed non-significant elevations in the adjusted odds ratio for definite exposed workers defined by their usual occupation (OR = 1.78; 95% CI = 0.70-4.51) and ever/never employed status (OR = 1.54; 95% CI = 0.17-4.91).^ These findings suggest that employment in occupations with presumed EMF exposures does not increase CNS tumor risk as was suggested by previous investigations. The results of this study also do not support the EMF-tumor promotion hypothesis. ^
Resumo:
Lipid components of hydrothermal deposits from the unusual field at 14°45'N MAR and from the typical field at 29°N MAR were studied. For the first time mixed nature of organic matter (OM) from hydrothermal sulfide deposits was established with use of biochemical, gas chromatographic, and molecular methods of studies. In composition of OM lipids of phytoplankton, those of chemosynthesis bacteria and non-biogenic synthesis lipids were determined. Specific conditions of localization of sulfide deposits originated from ''black smokers'' (reducing conditions, absence of free oxygen, presence of reduced sulfur preventing OM from decomposition) let biogenic material, including bacterial one, be preserved in sulfide deposits. The hydrothermal system at 14°45'N MAR is characterized by geological, geochemical and thermodynamic conditions allowing abiogenic synthesis of methane and petroleum hydrocarbons. For sulfide deposits at 29°N and other active hydrothermal fields known at MAR, abiogenic synthesis of hydrocarbons occurs in lower scales.
Resumo:
This report presents short-wave infrared spectroscopic data acquired from both core and powdered samples collected during Ocean Drilling Program Leg 193, from Holes 1188A, 1188F, and 1189A, using a Portable Infrared Mineral Analyzer reflectance spectrometer. The distribution of alteration minerals detected using this method for each site is presented.
Resumo:
Soil erosion is a widespread problem in agricultural landscapes, particularly in regions with strong rainfall events. Vegetated field margins can mitigate negative impacts of soil erosion by trapping eroded material. In this data set, we present data of sediment trapped by 12 field margins during the monsoon season of 2013 in an agricultural landscape in the Haean-myun catchment in South Korea. Prior to the beginning of monsoon season, we equipped a total of 12 sites representing three replicates for each of four different types of field margins ("managed flat", "managed steep", "natural flat" and "natural steep") with Astroturf mats with a size of 34 cm x 25 cm (850 cm**2). The mats (n = 15 / site) were installed at three levels: upslope, immediately before the field margin to quantify the sediments that reach it, in the middle of the field margin to quantify the locally trapped sediments, and after the field margin at the downslope edge to quantify the sediments that leave the field margin to the next field or to the stream. Sediment was collected after each rain event until the end of the monsoon season.
Resumo:
Results of direct geological and geochemical observations of the modern Rainbow hydrothermal field (Mid-Atlantic Ridge, 36°14'N; 33°54'W) carried out from the deep-sea manned Mir submersibles during Cruises 41 and 42 of the R/V Akademik Mstislav Keldysh in 1998-1999 and data of laboratory studies of collected samples are under consideration in the paper. The field lacks neovolcanic rocks and the axial part of the rift is filled in with a serpentinite protrusion. In this field there occur metalliferous sediments, as well as active and relict sulfide edifices composed of sulfide minerals; pyrrhotite, chalcopyrite, isocubanite, sphalerite, marcasite, pyrite, bornite, chalcosine, digenite, magnetite, anhydrite, rare troilite, wurtzite, millerite, and pentlandite have been determined. Sulfide ores are characterized by concentric-zoned textures. During in situ measurements during 35 minutes temperature of hydrothermal fluids was varying within a range from 250 to 350°C. Calculated chemical and isotopic composition of hydrothermal fluid shows elevated concentrations of Cl, Ni, Co, CH4, and H2. Values of d34S of H2S range from +2.4 to +3.1 per mil, of d13C of CH4 from -15.2 to -11.2 per mil, and d13C of CO2 from +1.0 to -4.0 per mil. Fluid inclusions are homogenized at temperatures from 140 to 360°C, whereas salinity of the fluid varies from 4.2 to 8.5 wt %. d34S values of sulfides range from +1.3 to +12.5 per mil. 3He/4He ratio in mineral-forming fluid contained in the fluid inclusions from sulfides of the Rainbow field varies from 0.00000374 to 0.0000101. It is shown that hydrothermal activity in the area continues approximately during 100 ka. It is assumed that the fluid and sulfide edifices contain components from the upper mantle. A hypothesis of phase separation of a supercritical fluid that results in formation of brines is proposed. Hydrothermal activity is related to the tectonic, not volcanic, phase of the Mid-Atlantic Ridge evolution.
Resumo:
Chemical and isotopic data for rare massive and semimassive sulfide samples cored at Site 1189 (Roman Ruins, PACMANUS) suggest their genetic relationship with sulfide chimneys at the seafloor. Sand collected from the hammer drill after commencement of Hole 1189B indicates that at least the lower section of the cased interval was occupied by material similar to the stockwork zone cored from 31 to ~100 meters below seafloor (mbsf) in this hole, but with increased content of barite, sphalerite, and lead-bearing minerals. Fractional crystallization of ascending hydrothermal fluid involving early precipitation of pyrite may explain vertical mineralogical and chemical zoning within the stockwork conduit and the high base and precious metal contents of Roman Ruins chimneys. A mineralized volcaniclastic unit cored deep in Hole 1189A possibly represents the lateral fringe of the conduit system. Lead isotope ratios in the sulfides differ slightly but significantly from those of fresh lavas from Pual Ridge, implying that at least some of the Pb within the Roman Ruins hydrothermal system derived from a deeper, more radiogenic source than the enclosing altered volcanic rocks.
Resumo:
Spatial variability of Vertisol properties is relevant for identifying those zones with physical degradation. In this sense, one has to face the problem of identifying the origin and distribution of spatial variability patterns. The objectives of the present work were (i) to quantify the spatial structure of different physical properties collected from a Vertisol, (ii) to search for potential correlations between different spatial patterns and (iii) to identify relevant components through multivariate spatial analysis. The study was conducted on a Vertisol (Typic Hapludert) dedicated to sugarcane (Saccharum officinarum L.) production during the last sixty years. We used six soil properties collected from a squared grid (225 points) (penetrometer resistance (PR), total porosity, fragmentation dimension (Df), vertical electrical conductivity (ECv), horizontal electrical conductivity (ECh) and soil water content (WC)). All the original data sets were z-transformed before geostatistical analysis. Three different types of semivariogram models were necessary for fitting individual experimental semivariograms. This suggests the different natures of spatial variability patterns. Soil water content rendered the largest nugget effect (C0 = 0.933) while soil total porosity showed the largest range of spatial correlation (A = 43.92 m). The bivariate geostatistical analysis also rendered significant cross-semivariance between different paired soil properties. However, four different semivariogram models were required in that case. This indicates an underlying co-regionalization between different soil properties, which is of interest for delineating management zones within sugarcane fields. Cross-semivariograms showed larger correlation ranges than individual, univariate, semivariograms (A ≥ 29 m). All the findings were supported by multivariate spatial analysis, which showed the influence of soil tillage operations, harvesting machinery and irrigation water distribution on the status of the investigated area.
Resumo:
Theoretical models suggest that overlapping generations, in combination with a temporally fluctuating environment, may allow the persistence of competitors that otherwise would not coexist. Despite extensive theoretical development, this “storage effect” hypothesis has received little empirical attention. Herein I present the first explicit mathematical analysis of the contribution of the storage effect to the dynamics of competing natural populations. In Oneida Lake, NY, data collected over the past 30 years show a striking negative correlation between the water-column densities of two species of suspension-feeding zooplankton, Daphnia galeata mendotae and Daphnia pulicaria. I have demonstrated competition between these two species and have shown that both possess long-lived eggs that establish overlapping generations. Moreover, recruitment to this long-lived stage varies annually, so that both daphnids have years in which they are favored (for recruitment) relative to their competitor. When the long-term population growth rates are calculated both with and without the effects of a variable environment, I show that D. galeata mendotae clearly cannot persist without the environmental variation and prolonged dormancy (i.e., storage effect) whereas D. pulicaria persists through consistently high per capita recruitment to the long-lived stage.
Resumo:
Em relação à fauna Culicidae, a Caatinga é um dos biomas mais desconhecidos do Brasil. Há carência de registro de ocorrência de culicídeos, bem como de estudos sobre as interações deles com o ambiente silvestre. Assim, o objetivo deste estudo foi investigar biodiversidade e aspectos ecológicos e epidemiológicos da fauna Culicidae em áreas de conservação do bioma Caatinga. Para isso foram consideradas duas unidades de conservação da Caatinga e realizados 19 levantamentos entomológicos mensais e consecutivos. Foram realizadas coletas de formas imaturas de mosquitos em bromélias, ocos de árvore e criadouros de solo, além da coleta de mosquitos adultos de hábitos diurno, crepuscular e noturno. Ao todo, entre mosquitos adultos e imaturos associados a habitats fitotelmatas, foram coletados 11.456 culicídeos distribuídos em 28 espécies, das quais 11 eram desconhecidas para a ciência. A fauna de imaturos coletados em bromélias e ocos de árvore interferiu na composição da fauna de mosquitos adultos e houve variações na abundância e nos padrões de diversidade de acordo com fitofisionomia do ambiente. Temperatura e umidade foram os parâmetros ambientais mais fortemente associados à abundância de culicídeos. Foram registradas novas ocorrências de anofelinos, coletados em criadouros de solo, ampliando a distribuição das espécies para o semiárido brasileiro. Este é um estudo pioneiro acerca da biodiversidade da fauna Culicidae em áreas de conservação da Caatinga que apresenta uma rica e desconhecida fauna de culicídeos, inédita para a ciência.
Resumo:
We analyzed size-specific dry mass, sinking velocity, and apparent diffusivity in field-sampled marine snow, laboratory-made aggregates formed by diatoms or coccolithophorids, and small and large zooplankton fecal pellets with naturally varying content of ballast materials. Apparent diffusivity was measured directly inside aggregates and large (millimeter-long) fecal pellets using microsensors. Large fecal pellets, collected in the coastal upwelling off Cape Blanc, Mauritania, showed the highest volume-specific dry mass and sinking velocities because of a high content of opal, carbonate, and lithogenic material (mostly Saharan dust), which together comprised ~80% of the dry mass. The average solid matter density within these large fecal pellets was 1.7 g cm**-3, whereas their excess density was 0.25 ± 0.07 g cm**-3. Volume-specific dry mass of all sources of aggregates and fecal pellets ranged from 3.8 to 960 µg mm**-3, and average sinking velocities varied between 51 and 732 m d**-1. Porosity was >0.43 and >0.96 within fecal pellets and phytoplankton-derived aggregates, respectively. Averaged values of apparent diffusivity of gases within large fecal pellets and aggregates were 0.74 and 0.95 times that of the free diffusion coefficient in sea water, respectively. Ballast increases sinking velocity and, thus, also potential O2 fluxes to sedimenting aggregates and fecal pellets. Hence, ballast minerals limit the residence time of aggregates in the water column by increasing sinking velocity, but apparent diffusivity and potential oxygen supply within aggregates are high, whereby a large fraction of labile organic carbon can be respired during sedimentation.
Resumo:
"The Carra edition."
Resumo:
Vol. 1-21: The Carra edition.
Resumo:
Understanding, and controlling, the conditions under which calcite precipitates within geothermal energy production systems is a key step in maintaining production efficiency. In this study, I apply methods of bulk and clumped isotope thermometry to an operating geothermal energy facility in northern Nevada to see how those methods can better inform the facility owner, AltaRock Energy, Inc., about the occurrence of calcite scale in their power plant. I have taken water samples from five production wells, the combined generator effluent, shallow cold-water wells, monitoring wells, and surface water. I also collected calcite scale samples from within the production system. Water samples were analyzed for stable oxygen isotope composition (d18O). Calcite samples were analyzed for stable oxygen and carbon (d13C) composition, and clumped isotope composition (D47). With two exceptions, the water compositions are very similar, likely indicating common origin and a well-mixed hydrothermal system. The calcite samples are likewise similar to one another. Apparent temperatures calculated from d18O values of water and calcite are lower than those recorded for the system. Apparent temperatures calculated from D47 are several degrees higher than the recorded well temperatures. The lower temperatures from the bulk isotope data are consistent with temperatures that could be expected during a de-pressurization of the production system, which would cause boiling in the pipes, a reduction in system temperature, and rapid precipitation of calcite scale. However, the high apparent temperature indicated by the D47 data suggests that the calcite is depleted in clumped isotopes given the known temperature of the system, which is inconsistent with this hypothesis. This depletion could instead result from disequilibrium isotopic fractionation during the aforementioned boil events, which would make both the apparent d18O-based and D47-based temperatures unrepresentative of the actual water temperature. This research can help improve our understanding of how isotopic analyses can better inform us about the movement of water through geothermal systems of the past and how it now moves through modern systems. Increased understanding of water movement in these systems could potentially allow for more efficient utilization of geothermal energy as a renewable resource.