948 resultados para Field programmable gate arrays (FPGA)
Resumo:
Chemists are now able to emulate the ideas and instruments of mathematics and computer science with molecules. The integration of molecular logic gates into small arrays has been a growth area during the last few years. The design principles underlying a collection of these cases are examined. Some of these computing molecules are applicable in medical- and biotechnologies. Cases of blood diagnostics, 'lab-on-a-molecule' systems, and molecular computational identification of small objects are included.
Resumo:
Introduction Juvenile idiopathic arthritis (JIA) is a heterogeneous disease characterized by chronic joint inflammation of unknown cause in children. JIA is an autoimmune disease and small numbers of auto-antibodies have been reported in JIA patients. The identification of antibody markers could improve the existing clinical management of patients. Methods A pilot study was performed on the application of a high-throughput platform, nucleic acid programmable protein arrays (NAPPA), to assess the levels of antibodies present in the systemic circulation and synovial joint of a small cohort of juvenile arthritis patients. Plasma and synovial fluid from ten JIA patients was screened for antibodies against 768 proteins on NAPPA. Results Quantitative reproducibility of NAPPA was demonstrated with >0.95 intra- and inter- array correlations. A strong correlation was also observed for the levels of antibodies between plasma and synovial fluid across the study cohort (r=0.96). Differences in the levels of 18 antibodies were revealed between sample types across all patients. Patients were segregated into two clinical subtypes with distinct antibody signatures by unsupervised hierarchical cluster analysis. Conclusions NAPPA provides a high-throughput quantitatively reproducible platform to screen for disease specific autoantibodies at the proteome level on a microscope slide. The strong correlation between the circulating antibody levels and those of the inflamed joint represents a novel finding and provides confidence to use plasma for discovery of autoantibodies in JIA, thus circumventing the challenges associated with joint aspiration. We expect that autoantibody profiling of JIA patients on NAPPA could yield antibody markers that can act as criteria to stratify patients, predict outcomes and understand disease etiology at the molecular level.
Resumo:
True random number generation is crucial in hardware security applications. Proposed is a voltage-controlled true random number generator that is inherently field-programmable. This facilitates increased entropy as a randomness source because there is more than one configuration state which lends itself to more compact and low-power architectures. It is evaluated through electrical characterisation and statistically through industry-standard randomness tests. To the best of the author's knowledge, it is one of the most efficient designs to date with respect to hardware design metrics.
Resumo:
The new generations of SRAM-based FPGA (field programmable gate array) devices are the preferred choice for the implementation of reconfigurable computing platforms intended to accelerate processing in real-time systems. However, FPGA's vulnerability to hard and soft errors is a major weakness to robust configurable system design. In this paper, a novel built-in self-healing (BISH) methodology, based on run-time self-reconfiguration, is proposed. A soft microprocessor core implemented in the FPGA is responsible for the management and execution of all the BISH procedures. Fault detection and diagnosis is followed by repairing actions, taking advantage of the dynamic reconfiguration features offered by new FPGA families. Meanwhile, modular redundancy assures that the system still works correctly
Resumo:
A crescente evolução dos dispositivos contendo circuitos integrados, em especial os FPGAs (Field Programmable Logic Arrays) e atualmente os System on a chip (SoCs) baseados em FPGAs, juntamente com a evolução das ferramentas, tem deixado um espaço entre o lançamento e a produção de materiais didáticos que auxiliem os engenheiros no Co- Projecto de hardware/software a partir dessas tecnologias. Com o intuito de auxiliar na redução desse intervalo temporal, o presente trabalho apresenta o desenvolvimento de documentos (tutoriais) direcionados a duas tecnologias recentes: a ferramenta de desenvolvimento de hardware/software VIVADO; e o SoC Zynq-7000, Z-7010, ambos desenvolvidos pela Xilinx. Os documentos produzidos são baseados num projeto básico totalmente implementado em lógica programável e do mesmo projeto implementado através do processador programável embarcado, para que seja possível avaliar o fluxo de projeto da ferramenta para um projeto totalmente implementado em hardware e o fluxo de projeto para o mesmo projeto implementado numa estrutura de harware/software.
Resumo:
How can a bridge be built between autonomic computing approaches and parallel computing systems? The work reported in this paper is motivated towards bridging this gap by proposing a swarm-array computing approach based on ‘Intelligent Agents’ to achieve autonomy for distributed parallel computing systems. In the proposed approach, a task to be executed on parallel computing cores is carried onto a computing core by carrier agents that can seamlessly transfer between processing cores in the event of a predicted failure. The cognitive capabilities of the carrier agents on a parallel processing core serves in achieving the self-ware objectives of autonomic computing, hence applying autonomic computing concepts for the benefit of parallel computing systems. The feasibility of the proposed approach is validated by simulation studies using a multi-agent simulator on an FPGA (Field-Programmable Gate Array) and experimental studies using MPI (Message Passing Interface) on a computer cluster. Preliminary results confirm that applying autonomic computing principles to parallel computing systems is beneficial.
Resumo:
Dispersion in the near-field region of localised releases in urban areas is difficult to predict because of the strong influence of individual buildings. Effects include upstream dispersion, trapping of material into building wakes and enhanced concentration fluctuations. As a result, concentration patterns are highly variable in time and mean profiles in the near field are strongly non-Gaussian. These aspects of near-field dispersion are documented by analysing data from direct numerical simulations in arrays of building-like obstacles and are related to the underlying flow structure. The mean flow structure around the buildings is found to exert a strong influence over the dispersion of material in the near field. Diverging streamlines around buildings enhance lateral dispersion. Entrainment of material into building wakes in the very near field gives rise to secondary sources, which then affect the subsequent dispersion pattern. High levels of concentration fluctuations are also found in this very near field; the fluctuation intensity is of order 2 to 5.
Resumo:
RFID (Radio Frequency Identification) identifies object by using the radio frequency which is a non-contact automatic identification technique. This technology has shown its powerful practical value and potential in the field of manufacturing, retailing, logistics and hospital automation. Unfortunately, the key problem that impacts the application of RFID system is the security of the information. Recently, researchers have demonstrated solutions to security threats in RFID technology. Among these solutions are several key management protocols. This master dissertations presents a performance evaluation of Neural Cryptography and Diffie-Hellman protocols in RFID systems. For this, we measure the processing time inherent in these protocols. The tests was developed on FPGA (Field-Programmable Gate Array) platform with Nios IIr embedded processor. The research methodology is based on the aggregation of knowledge to development of new RFID systems through a comparative analysis between these two protocols. The main contributions of this work are: performance evaluation of protocols (Diffie-Hellman encryption and Neural) on embedded platform and a survey on RFID security threats. According to the results the Diffie-Hellman key agreement protocol is more suitable for RFID systems
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Patente de invenção de um método para arquitetura de computador reconfigurável e sujeita a constantes otimizações que compreende uma arquitetura de computador implementada em FPGA (Field Programmable Gate Array).
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
This thesis develops high performance real-time signal processing modules for direction of arrival (DOA) estimation for localization systems. It proposes highly parallel algorithms for performing subspace decomposition and polynomial rooting, which are otherwise traditionally implemented using sequential algorithms. The proposed algorithms address the emerging need for real-time localization for a wide range of applications. As the antenna array size increases, the complexity of signal processing algorithms increases, making it increasingly difficult to satisfy the real-time constraints. This thesis addresses real-time implementation by proposing parallel algorithms, that maintain considerable improvement over traditional algorithms, especially for systems with larger number of antenna array elements. Singular value decomposition (SVD) and polynomial rooting are two computationally complex steps and act as the bottleneck to achieving real-time performance. The proposed algorithms are suitable for implementation on field programmable gated arrays (FPGAs), single instruction multiple data (SIMD) hardware or application specific integrated chips (ASICs), which offer large number of processing elements that can be exploited for parallel processing. The designs proposed in this thesis are modular, easily expandable and easy to implement. Firstly, this thesis proposes a fast converging SVD algorithm. The proposed method reduces the number of iterations it takes to converge to correct singular values, thus achieving closer to real-time performance. A general algorithm and a modular system design are provided making it easy for designers to replicate and extend the design to larger matrix sizes. Moreover, the method is highly parallel, which can be exploited in various hardware platforms mentioned earlier. A fixed point implementation of proposed SVD algorithm is presented. The FPGA design is pipelined to the maximum extent to increase the maximum achievable frequency of operation. The system was developed with the objective of achieving high throughput. Various modern cores available in FPGAs were used to maximize the performance and details of these modules are presented in detail. Finally, a parallel polynomial rooting technique based on Newton’s method applicable exclusively to root-MUSIC polynomials is proposed. Unique characteristics of root-MUSIC polynomial’s complex dynamics were exploited to derive this polynomial rooting method. The technique exhibits parallelism and converges to the desired root within fixed number of iterations, making this suitable for polynomial rooting of large degree polynomials. We believe this is the first time that complex dynamics of root-MUSIC polynomial were analyzed to propose an algorithm. In all, the thesis addresses two major bottlenecks in a direction of arrival estimation system, by providing simple, high throughput, parallel algorithms.
Resumo:
En el mundo actual las aplicaciones basadas en sistemas biométricos, es decir, aquellas que miden las señales eléctricas de nuestro organismo, están creciendo a un gran ritmo. Todos estos sistemas incorporan sensores biomédicos, que ayudan a los usuarios a controlar mejor diferentes aspectos de la rutina diaria, como podría ser llevar un seguimiento detallado de una rutina deportiva, o de la calidad de los alimentos que ingerimos. Entre estos sistemas biométricos, los que se basan en la interpretación de las señales cerebrales, mediante ensayos de electroencefalografía o EEG están cogiendo cada vez más fuerza para el futuro, aunque están todavía en una situación bastante incipiente, debido a la elevada complejidad del cerebro humano, muy desconocido para los científicos hasta el siglo XXI. Por estas razones, los dispositivos que utilizan la interfaz cerebro-máquina, también conocida como BCI (Brain Computer Interface), están cogiendo cada vez más popularidad. El funcionamiento de un sistema BCI consiste en la captación de las ondas cerebrales de un sujeto para después procesarlas e intentar obtener una representación de una acción o de un pensamiento del individuo. Estos pensamientos, correctamente interpretados, son posteriormente usados para llevar a cabo una acción. Ejemplos de aplicación de sistemas BCI podrían ser mover el motor de una silla de ruedas eléctrica cuando el sujeto realice, por ejemplo, la acción de cerrar un puño, o abrir la cerradura de tu propia casa usando un patrón cerebral propio. Los sistemas de procesamiento de datos están evolucionando muy rápido con el paso del tiempo. Los principales motivos son la alta velocidad de procesamiento y el bajo consumo energético de las FPGAs (Field Programmable Gate Array). Además, las FPGAs cuentan con una arquitectura reconfigurable, lo que las hace más versátiles y potentes que otras unidades de procesamiento como las CPUs o las GPUs.En el CEI (Centro de Electrónica Industrial), donde se lleva a cabo este TFG, se dispone de experiencia en el diseño de sistemas reconfigurables en FPGAs. Este TFG es el segundo de una línea de proyectos en la cual se busca obtener un sistema capaz de procesar correctamente señales cerebrales, para llegar a un patrón común que nos permita actuar en consecuencia. Más concretamente, se busca detectar cuando una persona está quedándose dormida a través de la captación de unas ondas cerebrales, conocidas como ondas alfa, cuya frecuencia está acotada entre los 8 y los 13 Hz. Estas ondas, que aparecen cuando cerramos los ojos y dejamos la mente en blanco, representan un estado de relajación mental. Por tanto, este proyecto comienza como inicio de un sistema global de BCI, el cual servirá como primera toma de contacto con el procesamiento de las ondas cerebrales, para el posterior uso de hardware reconfigurable sobre el cual se implementarán los algoritmos evolutivos. Por ello se vuelve necesario desarrollar un sistema de procesamiento de datos en una FPGA. Estos datos se procesan siguiendo la metodología de procesamiento digital de señales, y en este caso se realiza un análisis de la frecuencia utilizando la transformada rápida de Fourier, o FFT. Una vez desarrollado el sistema de procesamiento de los datos, se integra con otro sistema que se encarga de captar los datos recogidos por un ADC (Analog to Digital Converter), conocido como ADS1299. Este ADC está especialmente diseñado para captar potenciales del cerebro humano. De esta forma, el sistema final capta los datos mediante el ADS1299, y los envía a la FPGA que se encarga de procesarlos. La interpretación es realizada por los usuarios que analizan posteriormente los datos procesados. Para el desarrollo del sistema de procesamiento de los datos, se dispone primariamente de dos plataformas de estudio, a partir de las cuales se captarán los datos para después realizar el procesamiento: 1. La primera consiste en una herramienta comercial desarrollada y distribuida por OpenBCI, proyecto que se dedica a la venta de hardware para la realización de EEG, así como otros ensayos. Esta herramienta está formada por un microprocesador, un módulo de memoria SD para el almacenamiento de datos, y un módulo de comunicación inalámbrica que transmite los datos por Bluetooth. Además cuenta con el mencionado ADC ADS1299. Esta plataforma ofrece una interfaz gráfica que sirve para realizar la investigación previa al diseño del sistema de procesamiento, al permitir tener una primera toma de contacto con el sistema. 2. La segunda plataforma consiste en un kit de evaluación para el ADS1299, desde la cual se pueden acceder a los diferentes puertos de control a través de los pines de comunicación del ADC. Esta plataforma se conectará con la FPGA en el sistema integrado. Para entender cómo funcionan las ondas más simples del cerebro, así como saber cuáles son los requisitos mínimos en el análisis de ondas EEG se realizaron diferentes consultas con el Dr Ceferino Maestu, neurofisiólogo del Centro de Tecnología Biomédica (CTB) de la UPM. Él se encargó de introducirnos en los distintos procedimientos en el análisis de ondas en electroencefalogramas, así como la forma en que se deben de colocar los electrodos en el cráneo. Para terminar con la investigación previa, se realiza en MATLAB un primer modelo de procesamiento de los datos. Una característica muy importante de las ondas cerebrales es la aleatoriedad de las mismas, de forma que el análisis en el dominio del tiempo se vuelve muy complejo. Por ello, el paso más importante en el procesamiento de los datos es el paso del dominio temporal al dominio de la frecuencia, mediante la aplicación de la transformada rápida de Fourier o FFT (Fast Fourier Transform), donde se pueden analizar con mayor precisión los datos recogidos. El modelo desarrollado en MATLAB se utiliza para obtener los primeros resultados del sistema de procesamiento, el cual sigue los siguientes pasos. 1. Se captan los datos desde los electrodos y se escriben en una tabla de datos. 2. Se leen los datos de la tabla. 3. Se elige el tamaño temporal de la muestra a procesar. 4. Se aplica una ventana para evitar las discontinuidades al principio y al final del bloque analizado. 5. Se completa la muestra a convertir con con zero-padding en el dominio del tiempo. 6. Se aplica la FFT al bloque analizado con ventana y zero-padding. 7. Los resultados se llevan a una gráfica para ser analizados. Llegados a este punto, se observa que la captación de ondas alfas resulta muy viable. Aunque es cierto que se presentan ciertos problemas a la hora de interpretar los datos debido a la baja resolución temporal de la plataforma de OpenBCI, este es un problema que se soluciona en el modelo desarrollado, al permitir el kit de evaluación (sistema de captación de datos) actuar sobre la velocidad de captación de los datos, es decir la frecuencia de muestreo, lo que afectará directamente a esta precisión. Una vez llevado a cabo el primer procesamiento y su posterior análisis de los resultados obtenidos, se procede a realizar un modelo en Hardware que siga los mismos pasos que el desarrollado en MATLAB, en la medida que esto sea útil y viable. Para ello se utiliza el programa XPS (Xilinx Platform Studio) contenido en la herramienta EDK (Embedded Development Kit), que nos permite diseñar un sistema embebido. Este sistema cuenta con: Un microprocesador de tipo soft-core llamado MicroBlaze, que se encarga de gestionar y controlar todo el sistema; Un bloque FFT que se encarga de realizar la transformada rápida Fourier; Cuatro bloques de memoria BRAM, donde se almacenan los datos de entrada y salida del bloque FFT y un multiplicador para aplicar la ventana a los datos de entrada al bloque FFT; Un bus PLB, que consiste en un bus de control que se encarga de comunicar el MicroBlaze con los diferentes elementos del sistema. Tras el diseño Hardware se procede al diseño Software utilizando la herramienta SDK(Software Development Kit).También en esta etapa se integra el sistema de captación de datos, el cual se controla mayoritariamente desde el MicroBlaze. Por tanto, desde este entorno se programa el MicroBlaze para gestionar el Hardware que se ha generado. A través del Software se gestiona la comunicación entre ambos sistemas, el de captación y el de procesamiento de los datos. También se realiza la carga de los datos de la ventana a aplicar en la memoria correspondiente. En las primeras etapas de desarrollo del sistema, se comienza con el testeo del bloque FFT, para poder comprobar el funcionamiento del mismo en Hardware. Para este primer ensayo, se carga en la BRAM los datos de entrada al bloque FFT y en otra BRAM los datos de la ventana aplicada. Los datos procesados saldrán a dos BRAM, una para almacenar los valores reales de la transformada y otra para los imaginarios. Tras comprobar el correcto funcionamiento del bloque FFT, se integra junto al sistema de adquisición de datos. Posteriormente se procede a realizar un ensayo de EEG real, para captar ondas alfa. Por otro lado, y para validar el uso de las FPGAs como unidades ideales de procesamiento, se realiza una medición del tiempo que tarda el bloque FFT en realizar la transformada. Este tiempo se compara con el tiempo que tarda MATLAB en realizar la misma transformada a los mismos datos. Esto significa que el sistema desarrollado en Hardware realiza la transformada rápida de Fourier 27 veces más rápido que lo que tarda MATLAB, por lo que se puede ver aquí la gran ventaja competitiva del Hardware en lo que a tiempos de ejecución se refiere. En lo que al aspecto didáctico se refiere, este TFG engloba diferentes campos. En el campo de la electrónica: Se han mejorado los conocimientos en MATLAB, así como diferentes herramientas que ofrece como FDATool (Filter Design Analysis Tool). Se han adquirido conocimientos de técnicas de procesado de señal, y en particular, de análisis espectral. Se han mejorado los conocimientos en VHDL, así como su uso en el entorno ISE de Xilinx. Se han reforzado los conocimientos en C mediante la programación del MicroBlaze para el control del sistema. Se ha aprendido a crear sistemas embebidos usando el entorno de desarrollo de Xilinx usando la herramienta EDK (Embedded Development Kit). En el campo de la neurología, se ha aprendido a realizar ensayos EEG, así como a analizar e interpretar los resultados mostrados en el mismo. En cuanto al impacto social, los sistemas BCI afectan a muchos sectores, donde destaca el volumen de personas con discapacidades físicas, para los cuales, este sistema implica una oportunidad de aumentar su autonomía en el día a día. También otro sector importante es el sector de la investigación médica, donde los sistemas BCIs son aplicables en muchas aplicaciones como, por ejemplo, la detección y estudio de enfermedades cognitivas.
Análisis de las herramientas ORCC y Vivado HLS para la Síntesis de Modelos de Flujo de Datos RVC-CAL
Resumo:
En este Proyecto Fin de Grado se ha realizado un estudio de cómo generar, a partir de modelos de flujo de datos en RVC-CAL (Reconfigurable Video Coding – CAL Actor Language), modelos VHDL (Versatile Hardware Description Language) mediante Vivado HLS (Vivado High Level Synthesis), incluida en las herramientas disponibles en Vivado de Xilinx. Una vez conseguido el modelo VHDL resultante, la intención es que mediante las herramientas de Xilinx se programe en una FPGA (Field Programmable Gate Array) o el dispositivo Zynq también desarrollado por Xilinx. RVC-CAL es un lenguaje de flujo de datos que describe la funcionalidad de bloques funcionales, denominados actores. Las funcionalidades que desarrolla un actor se definen como acciones, las cuales pueden ser diferentes en un mismo actor. Los actores pueden comunicarse entre sí y formar una red de actores o network. Con Vivado HLS podemos obtener un diseño VHDL a partir de un modelo en lenguaje C. Por lo que la generación de modelos en VHDL a partir de otros en RVC-CAL, requiere una fase previa en la que los modelos en RVC-CAL serán compilados para conseguir su equivalente en lenguaje C. El compilador ORCC (Open RVC-CAL Compiler) es la herramienta que nos permite lograr diseños en lenguaje C partiendo de modelos en RVC-CAL. ORCC no crea directamente el código ejecutable, sino que genera un código fuente disponible para ser compilado por otra herramienta, en el caso de este proyecto, el compilador GCC (Gnu C Compiler) de Linux. En resumen en este proyecto nos encontramos con tres puntos de estudio bien diferenciados, los cuales son: 1. Partimos de modelos de flujo de datos en RVC-CAL, los cuales son compilados por ORCC para alcanzar su traducción en lenguaje C. 2. Una vez conseguidos los diseños equivalentes en lenguaje C, son sintetizados en Vivado HLS para conseguir los modelos en VHDL. 3. Los modelos VHDL resultantes serian manipulados por las herramientas de Xilinx para producir el bitstream que sea programado en una FPGA o en el dispositivo Zynq. En el estudio del segundo punto, nos encontramos con una serie de elementos conflictivos que afectan a la síntesis en Vivado HLS de los diseños en lenguaje C generados por ORCC. Estos elementos están relacionados con la manera que se encuentra estructurada la especificación en C generada por ORCC y que Vivado HLS no puede soportar en determinados momentos de la síntesis. De esta manera se ha propuesto una transformación “manual” de los diseños generados por ORCC que afecto lo menos posible a los modelos originales para poder realizar la síntesis con Vivado HLS y crear el fichero VHDL correcto. De esta forma este documento se estructura siguiendo el modelo de un trabajo de investigación. En primer lugar, se exponen las motivaciones y objetivos que apoyan y se esperan lograr en este trabajo. Seguidamente, se pone de manifiesto un análisis del estado del arte de los elementos necesarios para el desarrollo del mismo, proporcionando los conceptos básicos para la correcta comprensión y estudio del documento. Se realiza una descripción de los lenguajes RVC-CAL y VHDL, además de una introducción de las herramientas ORCC y Vivado, analizando las bondades y características principales de ambas. Una vez conocido el comportamiento de ambas herramientas, se describen las soluciones desarrolladas en nuestro estudio de la síntesis de modelos en RVC-CAL, poniéndose de manifiesto los puntos conflictivos anteriormente señalados que Vivado HLS no puede soportar en la síntesis de los diseños en lenguaje C generados por el compilador ORCC. A continuación se presentan las soluciones propuestas a estos errores acontecidos durante la síntesis, con las cuales se pretende alcanzar una especificación en C más óptima para una correcta síntesis en Vivado HLS y alcanzar de esta forma los modelos VHDL adecuados. Por último, como resultado final de este trabajo se extraen un conjunto de conclusiones sobre todos los análisis y desarrollos acontecidos en el mismo. Al mismo tiempo se proponen una serie de líneas futuras de trabajo con las que se podría continuar el estudio y completar la investigación desarrollada en este documento. ABSTRACT. In this Project it has made a study of how to generate, from data flow models in RVC-CAL (Reconfigurable Video Coding - Actor CAL Language), VHDL models (Versatile Hardware Description Language) by Vivado HLS (Vivado High Level Synthesis), included in the tools available in Vivado of Xilinx. Once achieved the resulting VHDL model, the intention is that by the Xilinx tools programmed in FPGA or Zynq device also developed by Xilinx. RVC-CAL is a dataflow language that describes the functionality of functional blocks, called actors. The functionalities developed by an actor are defined as actions, which may be different in the same actor. Actors can communicate with each other and form a network of actors. With Vivado HLS we can get a VHDL design from a model in C. So the generation of models in VHDL from others in RVC-CAL requires a preliminary phase in which the models RVC-CAL will be compiled to get its equivalent in C. The compiler ORCC (Open RVC-CAL Compiler) is the tool that allows us to achieve designs in C language models based on RVC-CAL. ORCC not directly create the executable code but generates an available source code to be compiled by another tool, in the case of this project, the GCC compiler (GNU C Compiler) of Linux. In short, in this project we find three well-defined points of study, which are: 1. We start from data flow models in RVC-CAL, which are compiled by ORCC to achieve its translation in C. 2. Once you realize the equivalent designs in C, they are synthesized in Vivado HLS for VHDL models. 3. The resulting models VHDL would be manipulated by Xilinx tools to produce the bitstream that is programmed into an FPGA or Zynq device. In the study of the second point, we find a number of conflicting elements that affect the synthesis Vivado HLS designs in C generated by ORCC. These elements are related to the way it is structured specification in C generated ORCC and Vivado HLS cannot hold at certain times of the synthesis. Thus it has proposed a "manual" transformation of designs generated by ORCC that affected as little as possible to the original in order to perform the synthesis Vivado HLS and create the correct file VHDL models. Thus this document is structured along the lines of a research. First, the motivations and objectives that support and hope to reach in this work are presented. Then it shows an analysis the state of the art of the elements necessary for its development, providing the basics for a correct understanding and study of the document. A description of the RVC-CAL and VHDL languages is made, in addition an introduction of the ORCC and Vivado tools, analyzing the advantages and main features of both. Once you know the behavior of both tools, the solutions developed in our study of the synthesis of RVC-CAL models, introducing the conflicting points mentioned above are described that Vivado HLS cannot stand in the synthesis of design in C language generated by ORCC compiler. Below the proposed solutions to these errors occurred during synthesis, with which it is intended to achieve optimum C specification for proper synthesis Vivado HLS and thus create the appropriate VHDL models are presented. Finally, as the end result of this work a set of conclusions on all analyzes and developments occurred in the same are removed. At the same time a series of future lines of work which could continue to study and complete the research developed in this document are proposed.
Resumo:
[new Intramural Building on right]