942 resultados para Fibras recicladas


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tanto en estructuras de edificación como de obra civil cada día resulta más frecuente la necesidad de su refuerzo, bien por problemas asociados a patologías o por el aumento de las cargas asociado generalmente a un cambio de uso. El objetivo principal de este trabajo ha sido estudiar el comportamiento de vigas de hormigón, reforzadas a cortante con tejidos de fibra de carbono o basalto pegados con resinas epoxi. Para conseguir este objetivo se han planteado objetivos parciales como el análisis de la fisuración y de los movimientos en las vigas reforzadas con polímeros reforzados con fibras (FRP) y la comparación del comportamiento mecánico de los sistemas de refuerzo estudiados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabajo presenta los resultados de la investigación llevada a cabo por los autores sobre el comportamiento de hormigón de 80 MPa de resistencia característica a compresión reforzado con diferentes cuantías de fibras de acero de alto contenido en carbono sometido al impacto de proyectiles de distintos calibres, determinando el espesor de muros de este tipo de hormigón que sería preciso disponer para impedir su perforación por dichos proyectiles, así como los valores máximos de penetración, para que en el caso de no producirse perforación y sólo penetración, no se genera cráter, “scabbing”, en el trasdós de los mismos. Previamente a los ensayos balísticos fue preciso diseñar los hormigones para que, presentaran determinadas características mecánicas, especialmente las relacionadas con la ductilidad, dado que estos hormigones especiales deben absorber la elevada energía que le transmiten los proyectiles y las ondas de choque que los acompañan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La tierra es un material utilizado desde hace muchos años y adaptado adecuadamente a las exigencias y necesidades de la sociedad actual, presenta interesantes aplicaciones desde el punto de vista del diseño y construcción de hoy en día. Tras ser parcialmente olvidada durante estos últimos dos siglos, siendo más acusado este olvido en los países industrializados, la tierra está resurgiendo con fuerza en su uso como material de construcción debido esencialmente a dos factores: la reciente preocupación medioambiental y la crisis económica existente. Es incuestionable, pues a la vista de todos queda, que el patrimonio legado por este material pobre, como algunos lo califican, es cuanto menos extenso, pero incluso así junto con los prejuicios iniciales, las limitaciones reales de la tierra como material, reducen notablemente los usos y empleos de ésta en la actualidad. A pesar de esta realidad, es cierto y se podría decir que tiene como origen la crisis del petróleo de 1973, el número de construcciones llevadas a cabo con este material y la cantidad de construcciones existentes levantadas con barro y rehabilitadas de manera tradicional, se han visto incrementadas paulatinamente en estas dos últimas décadas, recuperándose técnicas que habían quedado en desuso. Conocer de manera más profunda las ventajas y limitaciones que la tierra ofrece ha suscitado un gran interés entre algunos sectores de investigación, lo que ha conducido a dar un paso más en la innovación de este material y mejorar así, sus características de resistencia, de comportamiento frente al agua… En el trabajo presente se pretende estudiar el comportamiento de morteros de barro estabilizados con fibras naturales tales como la paja, el esparto o el sisal, para su uso como revestimientos sobre soportes de tierra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este trabajo se estudiará como el uso de Fibras en el Hormigón aumenta la Tenacidad, y por tanto otras propiedades de los hormigones, permitiendo soportar en algunos casos mayores esfuerzos antes de llegar a su rotura. El objetivo principal es profundizar en el estudio de las fibras como refuerzo en el Hormigón y de esta manera fijar los conceptos que lo caracterizan para ser capaces de definir y justificar actualmente su uso en el sector de la construcción. Con la misma finalidad se realizará una comparativa entre un Hormigón reforzado con Fibras de Acero y un Hormigón reforzado con Fibras de Polipropileno, analizando las variantes que presentan en cuanto a su Tenacidad. El conocer el comportamiento del Hormigón reforzado con cada fibra, nos permite definir las aplicaciones en las cuales se recomendaría utilizar cada una de ellas. Este Trabajo Fin de Master pretende poder predecir qué tipo de tenacidad tendrá el hormigón en función de los dos tipos de fibras de refuerzos propuestas y definir claramente la mejor aplicación que puede tener en la obra. Cabe mencionar que los modelos de Hormigón propuestos a lo largo del trabajo hacen referencia a la normativa descrita en la EHE para Hormigones reforzados con fibras. Para fibras de Acero como refuerzo en el hormigón, se consultará la UNE 83.500-1:1989 y la UNE 83512-1:2005, para fibras de polipropileno la UNE 83.500-2:1989 y la UNE 83512-2:2005, y para el índice de tenacidad y resistencia a primera fisura consultaremos la UNE 83510:2004. Como último alcance se intenta realizar un trabajo que sirva de consulta y orientación al lector interesado en el manejo y funcionalidad de este tipo de hormigones, de tal manera que a lo largo del escrito se mencionaran algunas normativas, procesos y ensayos referentes a los hormigones reforzados con fibras.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En los últimos años es notable la proliferación de trabajos y estudios que tratan sobre las características del hormigón reforzado con fibras, sin embargo su incorporación en el proyecto no está del todo claro, por lo que el presente trabajo se enfocará en describir las fibras y las principales características que estas modifican en el comportamiento del hormigón, tomando en consideración la Normativa EHE-08 y el Código Boliviano del Hormigón (CBH-87).También, trata de implementar el hormigón reforzado con fibras en la elaboración del proyecto, teniendo en cuenta la incidencia de las fibras en las diferentes etapas del mismo. Se compara la influencia del hormigón reforzado con fibras en las diferentes etapas de la elaboración del proyecto en España con la de un proyecto elaborado en Bolivia. Por último, se describen los aspectos a considerar en el control de calidad del hormigón reforzado con fibras a incluir en el proyecto, para una correcta utilización del mismo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El mantenimiento, la reparación y refuerzo de estructuras se ha convertido ahora más que nunca en una realidad. Dichos trabajos requieren un conocimiento de las técnicas y de los productos para evitar que vuelvan a aparecer problemas en un futuro. En este trabajo se pretende analizar el comportamiento de elementos estructurales reforzados con hormigones con fibras y/o solo fibras, comparando y analizando el comportamiento de cada aplicación. Se han realizado pruebas de laboratorio para estudiar y describir el refuerzo con fibra de carbono en elementos estructurales. También se compara el comportamiento de las diferentes fibras utilizadas en el hormigón como refuerzo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La realización de obras en las que se emplean materiales no tradicionales lleva asociada una complejidad estructural y constructiva. Con la comprobación in situ mediante la realización de un prototipo, se podrá poner a punto los equipos materiales y personales, los procedimientos de definición y ejecución, modelos de cálculos utilizados, etc. Con este objetivo se realizó un prototipo de una bóveda representativa a escala real que permitiera: seleccionar la dosificación de hormigón, entre las estudiadas previamente; optimizar el proceso de colocación, ajustando la localización de los puntos de hormigonado; y comprobar la adecuación de los equipos de hormigonado. Con las lecciones aprendidas de la fabricación de este prototipo se plantearon las modificaciones que se deben incorporar en obra. La experiencia adquirida llevó a modificar las fases de hormigonado y permitió adaptar los materiales al elemento construido.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta Tesis trata sobre el diseño y desarrollo de un material constructivo de fachada (tras ventilada), empleando plástico reciclado (granza de caucho, de neumáticos fuera de uso) para su elaboración. El uso de materiales reciclados para la elaboración de nuevos materiales constructivos, es a día de hoy, un valor agregado que contribuye tanto a la disminución de desechos tóxicos, como a la fabricación de productos de alta calidad. La investigación partió de la necesidad de comprender qué es un plástico, cómo son producidos, cuáles son los factores que permitían su reciclaje y qué propiedades podrían ser aprovechadas para desarrollar un nuevo material constructivo. En el estado del arte, fueron analizados los aspectos del plástico relacionados a su composición, propiedades, tipologías, producción, consumo, legislación europea y española, reciclaje y valorización energética. Para analizar más profundamente los materiales desarrollados a partir de plásticos reciclados, desde textiles hasta elementos constructivos. Con el conocimiento adquirido mediante este análisis previo, se diseñó una metodología de experimentación, utilizando caucho reciclado y derivados del yeso como agregados, en una matriz de resinas poliméricas reforzada con fibras naturales y sintéticas. Los resultados obtenidos en los ensayos físicos y térmicos, con los elementos producidos, demostraron que el material tiene una excelente resistencia a tensión así como una baja conductividad térmica. Esta investigación, servirá como precedente para el desarrollo de nuevos materiales y sistemas constructivos, utilizando agregados de plástico reciclado, en los procesos de fabricación. Ya que ha comprobado el enorme potencial que ofrecen, creando nuevos materiales, y contribuyendo a reducir la contaminación medio ambiental. "La mayor recompensa de nuestro trabajo no es lo que nos pagan por él, sino aquello en lo que nos convierte". John Ruskin Material compuesto (Composite) de caucho reciclado, fibras y resinas poliméricas. ABSTRACT This thesis deals with the design and development of a new facade construction material using recycled plastic (rubber pellets from used tires) for processing. The use of recycled materials for the development of new building materials, today is an added value which contributes both to the reduction of toxic waste, as well as the processing of products of good quality. The research derives from the need to understand what a plastic is, how they are produced, what the factors that allowed recycling are and what properties can be exploited to develop a new building material. In the prior art, were analyzed plastic aspects related to its composition, properties, typologies, production, consumption, European and Spanish legislation, recycling and energy recovery. To further analyze the materials developed from recycled plastics, from textiles to construction elements. With the knowledge gained from this previous analysis, we designed an experimental approach using recycled rubber and plaster derivatives as aggregates in a polymeric resin matrix reinforced with natural and synthetic fibers. The results obtained in physical and thermal testing, with the elements produced, showed that the material has excellent tensile strength and a low thermal conductivity. This research will serve as a precedent for the development of new materials and building systems, using recycled plastic aggregates in the manufacturing processes. Since it was found the enormous potential, creating new materials, and helping reduce environmental pollution. "The greatest reward of our work is not what we get paid for it, but what they make us."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En la presente investigación se buscó estudiar el efecto de la adición de fibras metálicas como refuerzo en hormigones de alta resistencia, y en especial su comportamiento frente al impacto de proyectiles. Se efectuó el estudio sobre un hormigón de alta resistencia (HAR), analizando los aspectos mecánicos, durabilidad y trabajabilidad para su colocación en obra. Las pruebas de laboratorio se llevaron a cabo en el Laboratorio de Materiales de Construcción de la Escuela Técnica Superior de Caminos Canales y Puertos de la UPM y los ensayos balísticos en la galería de tiro cubierta del Polígono de Experiencia de Carabanchel, adscrito a la Dirección General de Infraestructura del Ministerio de la Defensa. La caracterización del HAR empleado en el estudio se centró en los aspectos de resistencias mecánicas a compresión, tracción, flexotracción, tenacidad a flexotracción, punzonamiento, retracción, fluencia, temperatura interna y resistencia al impacto de proyectiles, siempre buscando de manera primordial analizar el efecto de la adición de fibras en el hormigón de alta resistencia. El programa de ensayos balísticos comprendió la fabricación de 47 placas de hormigón de diferentes espesores, desde 5 a 40 cm., 26 de dichas placas eran de HAR con una adición de fibras metálicas de 80 kg/m3, 11 de ellas eran de HAR sin fibras y 10 de un hormigón de resistencia convencional con y sin fibras; sobre dichas placas se efectuaron diversos impactos con proyectiles de los cuatro calibres siguientes: 7.62 AP, 12.70 M8, 20 mm APDS y 25 mm APDS. Las pruebas mostraron que el HAR presenta una mayor resistencia a los impactos de proyectiles, aunque sin la adición de fibras su fragilidad es un serio inconveniente para su utilización como barrera protectora, la adición de fibras reduce considerablemente la fragmentación en la cara posterior “scabbing” y en menor medida en la cara anterior “spalling”. También se incrementa la capacidad del hormigón a la resistencia de múltiples impactos. Se efectuó un estudio de las diferentes formulas y modelos, en especial el modelo desarrollado por Moreno [60], que se vienen utilizando para el diseño de barreras protectoras de hormigón contra impacto de proyectiles, analizando su viabilidad en el caso del hormigón de alta resistencia, hormigón para el cual no fueron desarrolladas y para el que no existen bases de cálculo específicas. In this research we have tried to study the effect of adding metallic fibres as a means of reinforcing high strength concrete, and especially its behaviour when impacted upon by projectiles. The study was carried out using high strength concrete (HSC), analysing its mechanical facets, durability and malleability when used in construction. The laboratory tests took place in the Laboratorio de Materiales de Construcción of the Escuela Técnica Superior de Caminos Canales y Puertos of the Universidad Politécnica de Madrid, and the ballistic tests were carried out in the covered shooting gallery of the Polígono de Experiencias in Carabanchel (Madrid), belongs to the Departamento de Infraestructura of the Ministerio de Defensa. The aspects of the HSC studied are its mechanical strength to compression, traction, flexotraction, resilience to flexo-traction, shear strength, creep, shrinkage, internal temperature and strength to the impact of projectiles, always looking to analyse the effect of adding fibres to HSC. The ballistic testing process required the construction of 47 concrete plates of different thicknesses, from 5 to 40 cm, 26 made which HSC containing of 80 kg/m3 metallic fibres of, 11 made of HSC without fibres, and 10 made with concrete of normal strength with and without fibres. These plates were subjected to a variety of impacts by four projectile, 7.62 AP, 12.70 M8, 20 mm APDS and 25 mm APDS. The results showed that HSC has a greater resistance to the impact of projectiles, although without the addition of fibres, its fragility makes it much less suitable for use as a protective barrier. The addition of fibres reduces considerably frontal fragmentation, known as “scabbing”, and to a lesser extent causes fragmentation of the reverse side, known as “spalling”. In addition, the concrete’s capacity to resist multiple impacts is improved by its letter ductility. A study was carried out on the various formulae and models used to design protective concrete barriers impacted on by projectiles, analysing their viability in the case of HSC for which they were not developed and for which no specific calculations exist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente trabajo trata de elementos reforzados con barras de armadura y Fibras Metálicas Recicladas (FMR). El objetivo principal es mejorar el comportamiento a fisuración de elementos sometidos a flexión pura y a flexión compuesta, aumentando en consecuencia las prestaciones en servicio de aquellas estructuras con requerimientos estrictos con respecto al control de fisuración. Entre éstas últimas se encuentran las estructuras integrales, es decir aquellas estructuras sin juntas (puentes o edificios), sometidas a cargas gravitatorias y deformaciones impuestas en los elementos horizontales debidas a retracción, fluencia y temperatura. Las FMR son obtenidas a partir de los neumáticos fuera de uso, y puesto que el procedimiento de reciclado se centra en el caucho en vez que en el acero, su forma es aleatoria y con longitud variable. A pesar de que la eficacia del fibrorefuerzo mediante FMR ha sido demostrada en investigaciones anteriores, la innovación que representa este trabajo consiste en proponer la acción combinada de barras convencionales y FMR en la mejora del comportamiento a fisuración. El objetivo es por tanto mejorar la sostenibilidad del proyecto de la estructura en HA al utilizar materiales reciclados por un lado, y aumentando por el otro la durabilidad. En primer lugar, se presenta el estado del arte con respecto a la fisuración en elementos de HA, que sucesivamente se amplía a elementos reforzados con barras y fibras. Asimismo, se resume el método simplificado para el análisis de columnas de estructuras sin juntas ya propuesto por Pérez et al., con particular énfasis en aquellos aspectos que son incompatibles con la acción de las fibras a nivel seccional. A continuación, se presenta un modelo para describir la deformabilidad seccional y la fisuración en elementos en HA, que luego se amplía a aquellos elementos reforzados con barras y fibras, teniendo en cuenta también los efectos debidos a la retracción (tension stiffening negativo). El modelo es luego empleado para ampliar el método simplificado para el análisis de columnas. La aportación consiste por tanto en contar con una metodología amplia de análisis para este tipo de elementos. Seguidamente, se presenta la campaña experimental preliminar que ha involucrado vigas a escala reducida sometidas a flexión simple, con el objetivo de validar la eficiencia y la usabilidad en el hormigón de las FMR de dos diferentes tipos, y su comportamiento con respecto a fibras de acero comerciales. Se describe a continuación la campaña principal, consistente en ensayos sobre ocho vigas en flexión simple a escala 1:1 (variando contenido en FRM, Ø/s,eff y recubrimiento) y doce columnas a flexión compuesta (variando contenido en FMR, Ø/s,eff y nivel de fuerza axil). Los resultados obtenidos en la campaña principal son presentados y comentados, resaltando las mejoras obtenidas en el comportamiento a fisuración de las vigas y columnas, y la rigidez estructural de las columnas. Estos resultados se comparan con las predicciones del modelo propuesto. Los principales parámetros estudiados para describir la fisuración y el comportamiento seccional de las vigas son: la separación entre fisuras, el alargamiento medio de las armaduras y la abertura de fisura, mientras que en los ensayos de las columnas se ha contrastado las leyes momento/curvatura, la tensión en las barras de armadura y la abertura de fisura en el empotramiento en la base. La comparación muestra un buen acuerdo entre las predicciones y los resultados experimentales. Asimismo, se nota la mejora en el comportamiento a fisuración debido a la incorporación de FMR en aquellos elementos con cuantías de armadura bajas en flexión simple, en elementos con axiles bajos y para el control de la fisuración en elementos con grandes recubrimientos, siendo por tanto resultados de inmediato impacto en la práctica ingenieril (diseño de losas, tanques, estructuras integrales, etc.). VIIIComo punto final, se presentan aplicaciones de las FMR en estructuras reales. Se discuten dos casos de elementos sometidos a flexión pura, en particular una viga simplemente apoyada y un tanque para el tratamiento de agua. En ambos casos la adicción de FMR al hormigón lleva a mejoras en el comportamiento a fisuración. Luego, utilizando el método simplificado para el análisis en servicio de columnas de estructuras sin juntas, se calcula la máxima longitud admisible en casos típicos de puentes y edificación. En particular, se demuestra que las limitaciones de la práctica ingenieril actual (sobre todo en edificación) pueden ser aumentadas considerando el comportamiento real de las columnas en HA. Finalmente, los mismos casos son modificados para considerar el uso de MFR, y se presentan las mejoras tanto en la máxima longitud admisible como en la abertura de fisura para una longitud y deformación impuesta. This work deals with elements reinforced with both rebars and Recycled Steel Fibres (RSFs). Its main objective is to improve cracking behaviour of elements subjected to pure bending and bending and axial force, resulting in better serviceability conditions for these structures demanding keen crack width control. Among these structures a particularly interesting type are the so-called integral structures, i.e. long jointless structures (bridges and buildings) subjected to gravitational loads and imposed deformations due to shrinkage, creep and temperature. RSFs are obtained from End of Life Tyres, and due to the recycling process that is focused on the rubber rather than on the steel they come out crooked and with variable length. Although the effectiveness of RSFs had already been proven by previous research, the innovation of this work consists in the proposing the combined action of conventional rebars and RSFs to improve cracking behaviour. Therefore, the objective is to improve the sustainability of RC structures by, on the one hand, using recycled materials, and on the other improving their durability. A state of the art on cracking in RC elements is firstly drawn. It is then expanded to elements reinforced with both rebars and fibres (R/FRC elements). Finally, the simplified method for analysis of columns of long jointless structures already proposed by Pérez et al. is resumed, with a special focus on the points that conflict when taking into account the action of fibres. Afterwards, a model to describe sectional deformability and cracking of R/FRC elements is presented, taking also into account the effect of shrinkage (negative tension stiffening). The model is then used to implement the simplified method for columns. The novelty represented by this is that a comprehensive methodology to analyse this type of elements is presented. A preliminary experimental campaign consisting in small beams subjected to pure bending is described, with the objective of validating the effectiveness and usability in concrete of RSFs of two different types, and their behaviour when compared with commercial steel fibres. With the results and lessons learnt from this campaign in mind, the main experimental campaign is then described, consisting in cracking tests of eight unscaled beams in pure bending (varying RSF content, Ø/s,eff and concrete cover) and twelve columns subjected to imposed displacement and axial force (varying RSF content, Ø/s,eff and squashing load ratio). The results obtained from the main campaign are presented and discussed, with particular focus on the improvement in cracking behaviour for the beams and columns, and structural stiffness for the columns. They are then compared with the proposed model. The main parameters studied to describe cracking and sectional behaviours of the beam tests are crack spacing, mean steel strain and crack width, while for the column tests these were moment/curvature, stress in rebars and crack with at column embedment. The comparison showed satisfactory agreement between experimental results and model predictions. Moreover, it is pointed out the improvement in cracking behaviour due to the addition of RSF for elements with low reinforcement ratios, elements with low squashing load ratios and for crack width control of elements with large concrete covers, thus representing results with a immediate impact in engineering practice (slab design, tanks, integral structures, etc.). Applications of RSF to actual structures are finally presented. Two cases of elements in pure bending are presented, namely a simple supported beam and a water treatment tank. In both cases the addition of RSF to concrete leads to improvements in cracking behaviour. Then, using the simplified model for the serviceability analysis of columns of jointless structures, the maximum achievable jointless length of typical cases of a bridge and building is obtained. In XIIparticular, it is shown how the limitations of current engineering practice (this is especially the case of buildings) can be increased by considering the actual behaviour of RC supports. Then, the same cases are modified considering the use of RSF, and the improvements both in maximum achievable length and in crack width for a given length and imposed strain at the deck/first floor are shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La electricidad y la electrónica han sido, habitualmente, los elementos bási­cos para el desarrollo de las comunicaciones a través de medios guiados. Desde el viejo telégrafo hasta los modernos sistemas de transmisión de televisión por cable, todas las técnicas empleadas han tenido en común el envío de una señal eléctrica a través de un elemento con­ductor. De igual manera a como llega la electricidad a los hogares, por medio de un cable metálico, el teléfono, el télex, el facsímil... todos ellos emplean una técni­ca en cierta manera análoga: una corriente eléctrica, llevando con ella la información deseada, accede a un equipo capaz de convertirla en señal reconocible por el usuario. En ocasiones, cuan­do la frecuencia de la señal transmitida es lo suficientemente alta, puede no ser una corriente eléctrica análoga a la empleada, por ejemplo, para alimentar los electrodomésticos convencionales. En esas circunstancias la información es transportada por un campo electromag­nético y el medio por el que se desplaza puede ser una guía metálica hueca. Pero todos los elementos que la rodean siguen estando basados en conceptos derivados del manejo de corrientes eléc­tricas y en su procesado mediante técni­cas, en general, electrónicas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Es cada vez más frecuente la rehabilitación de patrimonio construido, tanto de obras deterioradas como para la adecuación de obras existentes a nuevos usos o solicitaciones. Se ha considerado el estudio del refuerzo de obras de fábrica ya que constituyen un importante número dentro del patrimonio tanto de edificación como de obra civil (sistemas de muros de carga o en estructuras principales porticadas de acero u hormigón empleándose las fábricas como cerramiento o distribución con elementos autoportantes). A la hora de reparar o reforzar una estructura es importante realizar un análisis de las deficiencias, caracterización mecánica del elemento y solicitaciones presentes o posibles; en el apartado 1.3 del presente trabajo se refieren acciones de rehabilitación cuando lo que se precisa no es refuerzo estructural, así como las técnicas tradicionales más habituales para refuerzo de fábricas que suelen clasificarse según se trate de refuerzos exteriores o interiores. En los últimos años se ha adoptado el sistema de refuerzo de FRP, tecnología con origen en los refuerzos de hormigón tanto de elementos a flexión como de soportes. Estos refuerzos pueden ser de láminas adheridas a la fábrica soporte (SM), o de barras incluidas en rozas lineales (NSM). La elección de un sistema u otro depende de la necesidad de refuerzo y tipo de solicitación predominante, del acceso para colocación y de la exigencia de impacto visual. Una de las mayores limitaciones de los sistemas de refuerzo por FRP es que no suele movilizarse la resistencia del material de refuerzo, produciéndose previamente fallo en la interfase con el soporte con el consecuente despegue o deslaminación; dichos fallos pueden tener un origen local y propagarse a partir de una discontinuidad, por lo que es preciso un tratamiento cuidadoso de la superficie soporte, o bien como consecuencia de una insuficiente longitud de anclaje para la transferencia de los esfuerzos en la interfase. Se considera imprescindible una caracterización mecánica del elemento a reforzar. Es por ello que el trabajo presenta en el capítulo 2 métodos de cálculo de la fábrica soporte de distintas normativas y también una formulación alternativa que tiene en cuenta la fábrica histórica ya que su caracterización suele ser más complicada por la heterogeneidad y falta de clasificación de sus materiales, especialmente de los morteros. Una vez conocidos los parámetros resistentes de la fábrica soporte es posible diseñar el refuerzo; hasta la fecha existe escasa normativa de refuerzos de FRP para muros de fábrica, consistente en un protocolo propuesto por la ACI 440 7R-10 que carece de mejoras por tipo de anclaje y aporta valores muy conservadores de la eficacia del refuerzo. Como se ha indicado, la problemática principal de los refuerzos de FRP en muros es el modo de fallo que impide un aprovechamiento óptimo de las propiedades del material. Recientemente se están realizando estudios con distintos métodos de anclaje para estos refuerzos, con lo que se incremente la capacidad última y se mantenga el soporte ligado al refuerzo tras la rotura. Junto con sistemas de anclajes por prolongación del refuerzo (tanto para láminas como para barras) se han ensayado anclajes con llaves de cortante, barras embebidas, o anclajes mecánicos de acero o incluso de FRP. Este texto resume, en el capítulo 4, algunas de las campañas experimentales llevadas a cabo entre los años 2000 y 2013 con distintos anclajes. Se observan los parámetros fundamentales para medir la eficacia del anclajes como son: el modo de fallo, el incremento de resistencia, y los desplazamientos que permite observar la ductilidad del refuerzo; estos datos se analizan en función de la variación de: tipo de refuerzo incluyéndose el tipo de fibra y sistema de colocación, y tipo de anclaje. Existen también parámetros de diseño de los propios anclajes. En el caso de barras embebidas se resumen en diámetro y material de la barra, acabado superficial, dimensiones y forma de la roza, tipo de adhesivo. En el caso de anclajes de FRP tipo pasador la caracterización incluye: tipo de fibra, sistema de fabricación del anclajes y diámetro del mismo, radio de expansión del abanico, espaciamiento longitudinal de anclajes, número de filas de anclajes, número de láminas del refuerzo, longitud adherida tras el anclaje; es compleja la sistematización de resultados de los autores de las campañas expuestas ya que algunos de estos parámetros varían impidiendo la comparación. El capítulo 5 presenta los ensayos empleados para estas campañas de anclajes, distinguiéndose entre ensayos de modo I, tipo tracción directa o arrancamiento, que servirían para sistemas NSM o para cuantificar la resistencia individual de anclajes tipo pasador; ensayos de modo II, tipo corte simple, que se asemeja más a las condiciones de trabajo de los refuerzos. El presente texto se realiza con objeto de abrir una posible investigación sobre los anclajes tipo pasador, considerándose que junto con los sistemas de barra embebida son los que permiten una mayor versatilidad de diseño para los refuerzos de FRP y siendo su eficacia aún difícil de aislar por el número de parámetros de diseño. Rehabilitation of built heritage is becoming increasingly frequent, including repair of damaged works and conditioning for a new use or higher loads. In this work it has been considered the study of masonry wall reinforcement, as most buildings and civil works have load bearing walls or at least infilled masonry walls in concrete and steel structures. Before repairing or reinforcing an structure, it is important to analyse its deficiencies, its mechanical properties and both existing and potential loads; chapter 1, section 4 includes the most common rehabilitation methods when structural reinforcement is not needed, as well as traditional reinforcement techniques (internal and external reinforcement) In the last years the FRP reinforcement system has been adopted for masonry walls. FRP materials for reinforcement were initially used for concrete pillars and beams. FRP reinforcement includes two main techniques: surface mounted laminates (SM) and near surface mounted bars (NSM); one of them may be more accurate according to the need for reinforcement and main load, accessibility for installation and aesthetic requirements. One of the main constraints of FRP systems is not reaching maximum load for material due to premature debonding failure, which can be caused by surface irregularities so surface preparation is necessary. But debonding (or delamination for SM techniques) can also be a consequence of insufficient anchorage length or stress concentration. In order to provide an accurate mechanical characterisation of walls, chapter 2 summarises the calculation methods included in guidelines as well as alternative formulations for old masonry walls as historic wall properties are more complicated to obtain due to heterogeneity and data gaps (specially for mortars). The next step is designing reinforcement system; to date there are scarce regulations for walls reinforcement with FRP: ACI 440 7R-10 includes a protocol without considering the potential benefits provided by anchorage devices and with conservative values for reinforcement efficiency. As noted above, the main problem of FRP masonry walls reinforcement is failure mode. Recently, some authors have performed studies with different anchorage systems, finding that these systems are able to delay or prevent debonding . Studies include the following anchorage systems: Overlap, embedded bars, shear keys, shear restraint and fiber anchors. Chapter 4 briefly describes several experimental works between years 2000 and 2013, concerning different anchorage systems. The main parameters that measure the anchorage efficiency are: failure mode, failure load increase, displacements (in order to evaluate the ductility of the system); all these data points strongly depend on: reinforcement system, FRP fibers, anchorage system, and also on the specific anchorage parameters. Specific anchorage parameters are a function of the anchorage system used. The embedded bar system have design variables which can be identified as: bar diameter and material, surface finish, groove dimensions, and adhesive. In FRP anchorages (spikes) a complete design characterisation should include: type of fiber, manufacturing process, diameter, fan orientation, anchor splay width, anchor longitudinal spacing and number or rows, number or FRP sheet plies, bonded length beyond anchorage devices,...the parameters considered differ from some authors to others, so the comparison of results is quite complicated. Chapter 5 includes the most common tests used in experimental investigations on bond-behaviour and anchorage characterisation: direct shear tests (with variations single-shear and double-shear), pullout tests and bending tests. Each of them may be used according to the data needed. The purpose of this text is to promote further investigation of anchor spikes, accepting that both FRP anchors and embedded bars are the most versatile anchorage systems of FRP reinforcement and considering that to date its efficiency cannot be evaluated as there are too many design uncertainties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En los sistemas de comunicación por fibra óptica, la configuración usualmente empleada para velocidades de transmisión no superiores a 10 Gb/s es la modulación directa del láser (DML). Esta configuración presenta diversas ventajas frente a la modulación externa, como son un bajo coste, simplicidad de diseño, tamaño reducido y una elevada potencia de emisión. Sin embargo, el desplazamiento de la frecuencia nominal del láser (chirp) asociado al DML es un grave inconveniente al que deben enfrentarse los sistemas que trabajan con este modelo de transmisor. En este trabajo se propone un método para la optimización de los sistemas modulados directamente. Este método determina bajo qué condiciones se consigue contrarrestar la dispersión acumulada en el enlace ajustando adecuadamente el chirp del láser y los fenómenos no lineales que se generan en la fibra óptica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este trabajo se presenta el estudio de la energía de fractura de dos tipos de morteros de cemento reforzados con fibras de vidrio (GRC). El primer tipo es un GRC normal y en el segundo se ha realizado una adición de un 25% en peso de cemento de metacaolín de alta reactividad. El estudio de la energía de fractura de este tipo de material es de especial relevancia puesto que las normas que rigen su utilización no proporcionan datos sobre esta propiedad del material. Para solventar estos problemas se ha planteado una modificación de la recomendación RILEM TC-187-SOC. Se han modificado las dimensiones de las probetas y se han adaptado el resto de características. Los ensayos han mostrado como el GRC de control y el GRC con metacaolín tienen respectivamente una energía de 455 N/m y 1824 N/m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El uso de hormigón autocompactante se ha convertido en algo habitual desde su aparición a finales de la década de los 80 gracias a la reducción de costes de mano de obra, la buena calidad del acabado superficial y su uso en piezas fuertemente armadas. Por otro lado, los hormigones reforzados con fibras aportan una mejora en las propiedades mecánicas que puede permitir la reducción de armados y, en general, mejorar la respuesta del material ante todo tipo de solicitaciones, especialmente de tracción. En este trabajo se ha estudiado el comportamiento mecánico de un hormigón autocompactante con fibras de poliolefina. Se han obtenido resultados de caracterización mecánica y de fractura de un hormigón autocompactante de referencia sin fibras y de tres dosificaciones con fibras desde 3 kg/m³ hasta 6 kg/m³. Estos resultados han proporcionado un notable incremento en los valores de resistencia post-fisuración y de energía de fractura sin perjuicio de sus propiedades autocompactantes en estado fresco. Since the development of the first Self-Compacting Concrete in the late 80’s, its use has become widespread due to the reduction of the labor costs, the good finishing quality and the achieving of the necessary fluidity for congested reinforced pieces. Furthermore, Fiber Reinforced Concrete provides improvements of the mechanical properties which may even permit the reduction of the reinforcement. The mechanical behavior of a Self-Compacting Concrete with polyolefin fibers has been explored in this research. Results for mechanical properties and for fracture and post-cracking toughness have been obtained. The experimental campaign has been performed for a plain Self-Compacting Concrete and for three different fiber dosages from 3 kg/m³ to 6 kg/m³. These results show a significant enhancement of the post-cracking strength and the fracture energy without harming in the concrete self-compacting properties in fresh state.