864 resultados para Feature selection algorithm


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present an assessment of how tropical cyclone activity might change due to the influence of increased atmospheric carbon dioxide concentrations, using the UK’s High Resolution Global Environment Model (HiGEM) with N144 resolution (~90 km in the atmosphere and ~40 km in the ocean). Tropical cyclones are identified using a feature tracking algorithm applied to model output. Tropical cyclones from idealized 30-year 2×CO2 (2CO2) and 4×CO2 (4CO2) simulations are compared to those identified in a 150-year present-day simulation, which is separated into a 5-member ensemble of 30-year integrations. Tropical cyclones are shown to decrease in frequency globally by 9% in the 2CO2 and 26% in the 4CO2. Tropical cyclones only become more intese in the 4CO2, however uncoupled time slice experiments reveal an increase in intensity in the 2CO2. An investigation into the large-scale environmental conditions, known to influence tropical cyclone activity in the main development regions, is used to determine the response of tropical cyclone activity to increased atmospheric CO2. A weaker Walker circulation and a reduction in zonally averaged regions of updrafts lead to a shift in the location of tropical cyclones in the northern hemisphere. A decrease in mean ascent at 500 hPa contributes to the reduction of tropical cyclones in the 2CO2 in most basins. The larger reduction of tropical cyclones in the 4CO2 arises from further reduction of mean ascent at 500 hPa and a large enhancement of vertical wind shear, especially in the southern hemisphere, North Atlantic and North East Pacific.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability of the climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) to simulate North Atlantic extratropical cyclones in winter [December–February (DJF)] and summer [June–August (JJA)] is investigated in detail. Cyclones are identified as maxima in T42 vorticity at 850 hPa and their propagation is tracked using an objective feature-tracking algorithm. By comparing the historical CMIP5 simulations (1976–2005) and the ECMWF Interim Re-Analysis (ERA-Interim; 1979–2008), the authors find that systematic biases affect the number and intensity of North Atlantic cyclones in CMIP5 models. In DJF, the North Atlantic storm track tends to be either too zonal or displaced southward, thus leading to too few and weak cyclones over the Norwegian Sea and too many cyclones in central Europe. In JJA, the position of the North Atlantic storm track is generally well captured but some CMIP5 models underestimate the total number of cyclones. The dynamical intensity of cyclones, as measured by either T42 vorticity at 850 hPa or mean sea level pressure, is too weak in both DJF and JJA. The intensity bias has a hemispheric character, and it cannot be simply attributed to the representation of the North Atlantic large- scale atmospheric state. Despite these biases, the representation of Northern Hemisphere (NH) storm tracks has improved since CMIP3 and some CMIP5 models are able of representing well both the number and the intensity of North Atlantic cyclones. In particular, some of the higher-atmospheric-resolution models tend to have a better representation of the tilt of the North Atlantic storm track and of the intensity of cyclones in DJF.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The response of North Atlantic and European extratropical cyclones to climate change is investigated in the climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). In contrast to previous multimodel studies, a feature-tracking algorithm is here applied to separately quantify the re- sponses in the number, the wind intensity, and the precipitation intensity of extratropical cyclones. Moreover, a statistical framework is employed to formally assess the uncertainties in the multimodel projections. Under the midrange representative concentration pathway (RCP4.5) emission scenario, the December–February (DJF) response is characterized by a tripolar pattern over Europe, with an increase in the number of cyclones in central Europe and a decreased number in the Norwegian and Mediterranean Seas. The June–August (JJA) response is characterized by a reduction in the number of North Atlantic cyclones along the southern flank of the storm track. The total number of cyclones decreases in both DJF (24%) and JJA (22%). Classifying cyclones according to their intensity indicates a slight basinwide reduction in the number of cy- clones associated with strong winds, but an increase in those associated with strong precipitation. However, in DJF, a slight increase in the number and intensity of cyclones associated with strong wind speeds is found over the United Kingdom and central Europe. The results are confirmed under the high-emission RCP8.5 scenario, where the signals tend to be larger. The sources of uncertainty in these projections are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A method of automatically identifying and tracking polar-cap plasma patches, utilising data inversion and feature-tracking methods, is presented. A well-established and widely used 4-D ionospheric imaging algorithm, the Multi-Instrument Data Assimilation System (MIDAS), inverts slant total electron content (TEC) data from ground-based Global Navigation Satellite System (GNSS) receivers to produce images of the free electron distribution in the polar-cap ionosphere. These are integrated to form vertical TEC maps. A flexible feature-tracking algorithm, TRACK, previously used extensively in meteorological storm-tracking studies is used to identify and track maxima in the resulting 2-D data fields. Various criteria are used to discriminate between genuine patches and "false-positive" maxima such as the continuously moving day-side maximum, which results from the Earth's rotation rather than plasma motion. Results for a 12-month period at solar minimum, when extensive validation data are available, are presented. The method identifies 71 separate structures consistent with patch motion during this time. The limitations of solar minimum and the consequent small number of patches make climatological inferences difficult, but the feasibility of the method for patches larger than approximately 500 km in scale is demonstrated and a larger study incorporating other parts of the solar cycle is warranted. Possible further optimisation of discrimination criteria, particularly regarding the definition of a patch in terms of its plasma concentration enhancement over the surrounding background, may improve results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ERA-Interim reanalysis data from the past 35 years have been used with a newly-developed feature tracking algorithm to identify Indian monsoon depressions originating in or near the Bay of Bengal. These were then rotated, centralised and combined to give a fully three-dimensional 106-depression composite structure – a considerably larger sample than any previous detailed study on monsoon depressions and their structure. Many known features of depression structure are confirmed, particularly the existence of a maximum to the southwest of the centre in rainfall and other fields, and a westward axial tilt in others. Additionally, the depressions are found to have significant asymmetry due to the presence of the Himalayas; a bimodal mid-tropospheric potential vorticity core; a separation into thermally cold- (~–1.5K) and neutral- (~0K) cores near the surface with distinct properties; and that the centre has very large CAPE and very small CIN. Variability as a function of background state has also been explored, with land/coast/sea, diurnal, ENSO, active/break and Indian Ocean Dipole contrasts considered. Depressions are found to be markedly stronger during the active phase of the monsoon, as well as during La Niña. Depressions on land are shown to be more intense and more tightly constrained to the central axis. A detailed schematic diagram of a vertical cross-section through a composite depression is also presented, showing its inherent asymmetric structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three coupled knowledge transfer partnerships used pattern recognition techniques to produce an e-procurement system which, the National Audit Office reports, could save the National Health Service £500 m per annum. An extension to the system, GreenInsight, allows the environmental impact of procurements to be assessed and savings made. Both systems require suitable products to be discovered and equivalent products recognised, for which classification is a key component. This paper describes the innovative work done for product classification, feature selection and reducing the impact of mislabelled data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The electroencephalogram (EEG) may be described by a large number of different feature types and automated feature selection methods are needed in order to reliably identify features which correlate with continuous independent variables. New method: A method is presented for the automated identification of features that differentiate two or more groups inneurologicaldatasets basedupona spectraldecompositionofthe feature set. Furthermore, the method is able to identify features that relate to continuous independent variables. Results: The proposed method is first evaluated on synthetic EEG datasets and observed to reliably identify the correct features. The method is then applied to EEG recorded during a music listening task and is observed to automatically identify neural correlates of music tempo changes similar to neural correlates identified in a previous study. Finally,the method is applied to identify neural correlates of music-induced affective states. The identified neural correlates reside primarily over the frontal cortex and are consistent with widely reported neural correlates of emotions. Comparison with existing methods: The proposed method is compared to the state-of-the-art methods of canonical correlation analysis and common spatial patterns, in order to identify features differentiating synthetic event-related potentials of different amplitudes and is observed to exhibit greater performance as the number of unique groups in the dataset increases. Conclusions: The proposed method is able to identify neural correlates of continuous variables in EEG datasets and is shown to outperform canonical correlation analysis and common spatial patterns.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Parkinson is a neurodegenerative disease, in which tremor is the main symptom. This paper investigates the use of different classification methods to identify tremors experienced by Parkinsonian patients.Some previous research has focussed tremor analysis on external body signals (e.g., electromyography, accelerometer signals, etc.). Our advantage is that we have access to sub-cortical data, which facilitates the applicability of the obtained results into real medical devices since we are dealing with brain signals directly. Local field potentials (LFP) were recorded in the subthalamic nucleus of 7 Parkinsonian patients through the implanted electrodes of a deep brain stimulation (DBS) device prior to its internalization. Measured LFP signals were preprocessed by means of splinting, down sampling, filtering, normalization and rec-tification. Then, feature extraction was conducted through a multi-level decomposition via a wavelettrans form. Finally, artificial intelligence techniques were applied to feature selection, clustering of tremor types, and tremor detection.The key contribution of this paper is to present initial results which indicate, to a high degree of certainty, that there appear to be two distinct subgroups of patients within the group-1 of patients according to the Consensus Statement of the Movement Disorder Society on Tremor. Such results may well lead to different resultant treatments for the patients involved, depending on how their tremor has been classified. Moreover, we propose a new approach for demand driven stimulation, in which tremor detection is also based on the subtype of tremor the patient has. Applying this knowledge to the tremor detection problem, it can be concluded that the results improve when patient clustering is applied prior to detection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a global economy, manufacturers mainly compete with cost efficiency of production, as the price of raw materials are similar worldwide. Heavy industry has two big issues to deal with. On the one hand there is lots of data which needs to be analyzed in an effective manner, and on the other hand making big improvements via investments in cooperate structure or new machinery is neither economically nor physically viable. Machine learning offers a promising way for manufacturers to address both these problems as they are in an excellent position to employ learning techniques with their massive resource of historical production data. However, choosing modelling a strategy in this setting is far from trivial and this is the objective of this article. The article investigates characteristics of the most popular classifiers used in industry today. Support Vector Machines, Multilayer Perceptron, Decision Trees, Random Forests, and the meta-algorithms Bagging and Boosting are mainly investigated in this work. Lessons from real-world implementations of these learners are also provided together with future directions when different learners are expected to perform well. The importance of feature selection and relevant selection methods in an industrial setting are further investigated. Performance metrics have also been discussed for the sake of completion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O trabalho tem como objetivo aplicar uma modelagem não linear ao Produto Interno Bruto brasileiro. Para tanto foi testada a existência de não linearidade do processo gerador dos dados com a metodologia sugerida por Castle e Henry (2010). O teste consiste em verificar a persistência dos regressores não lineares no modelo linear irrestrito. A seguir a série é modelada a partir do modelo autoregressivo com limiar utilizando a abordagem geral para específico na seleção do modelo. O algoritmo Autometrics é utilizado para escolha do modelo não linear. Os resultados encontrados indicam que o Produto Interno Bruto do Brasil é melhor explicado por um modelo não linear com três mudanças de regime, que ocorrem no inicio dos anos 90, que, de fato, foi um período bastante volátil. Através da modelagem não linear existe o potencial para datação de ciclos, no entanto os resultados encontrados não foram suficientes para tal análise.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O trabalho tem como objetivo verificar a existência e a relevância dos Efeitos Calendário em indicadores industriais. São explorados modelos univariados lineares para o indicador mensal da produção industrial brasileira e alguns de seus componentes. Inicialmente é realizada uma análise dentro da amostra valendo-se de modelos estruturais de espaço-estado e do algoritmo de seleção Autometrics, a qual aponta efeito significante da maioria das variáveis relacionadas ao calendário. Em seguida, através do procedimento de Diebold-Mariano (1995) e do Model Confidence Set, proposto por Hansen, Lunde e Nason (2011), são realizadas comparações de previsões de modelos derivados do Autometrics com um dispositivo simples de Dupla Diferença para um horizonte de até 24 meses à frente. Em geral, os modelos Autometrics que consideram as variáveis de calendário se mostram superiores nas projeções de 1 a 2 meses adiante e superam o modelo simples em todos os horizontes. Quando se agrega os componentes de categoria de uso para formar o índice industrial total, há evidências de ganhos nas projeções de prazo mais curto.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In systems that combine the outputs of classification methods (combination systems), such as ensembles and multi-agent systems, one of the main constraints is that the base components (classifiers or agents) should be diverse among themselves. In other words, there is clearly no accuracy gain in a system that is composed of a set of identical base components. One way of increasing diversity is through the use of feature selection or data distribution methods in combination systems. In this work, an investigation of the impact of using data distribution methods among the components of combination systems will be performed. In this investigation, different methods of data distribution will be used and an analysis of the combination systems, using several different configurations, will be performed. As a result of this analysis, it is aimed to detect which combination systems are more suitable to use feature distribution among the components

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of the researches in artificial intelligence is to qualify the computer to execute functions that are performed by humans using knowledge and reasoning. This work was developed in the area of machine learning, that it s the study branch of artificial intelligence, being related to the project and development of algorithms and techniques capable to allow the computational learning. The objective of this work is analyzing a feature selection method for ensemble systems. The proposed method is inserted into the filter approach of feature selection method, it s using the variance and Spearman correlation to rank the feature and using the reward and punishment strategies to measure the feature importance for the identification of the classes. For each ensemble, several different configuration were used, which varied from hybrid (homogeneous) to non-hybrid (heterogeneous) structures of ensemble. They were submitted to five combining methods (voting, sum, sum weight, multiLayer Perceptron and naïve Bayes) which were applied in six distinct database (real and artificial). The classifiers applied during the experiments were k- nearest neighbor, multiLayer Perceptron, naïve Bayes and decision tree. Finally, the performance of ensemble was analyzed comparatively, using none feature selection method, using a filter approach (original) feature selection method and the proposed method. To do this comparison, a statistical test was applied, which demonstrate that there was a significant improvement in the precision of the ensembles

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article we describe a feature extraction algorithm for pattern classification based on Bayesian Decision Boundaries and Pruning techniques. The proposed method is capable of optimizing MLP neural classifiers by retaining those neurons in the hidden layer that realy contribute to correct classification. Also in this article we proposed a method which defines a plausible number of neurons in the hidden layer based on the stem-and-leaf graphics of training samples. Experimental investigation reveals the efficiency of the proposed method. © 2002 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Musical genre classification has been paramount in the last years, mainly in large multimedia datasets, in which new songs and genres can be added at every moment by anyone. In this context, we have seen the growing of musical recommendation systems, which can improve the benefits for several applications, such as social networks and collective musical libraries. In this work, we have introduced a recent machine learning technique named Optimum-Path Forest (OPF) for musical genre classification, which has been demonstrated to be similar to the state-of-the-art pattern recognition techniques, but much faster for some applications. Experiments in two public datasets were conducted against Support Vector Machines and a Bayesian classifier to show the validity of our work. In addition, we have executed an experiment using very recent hybrid feature selection techniques based on OPF to speed up feature extraction process. © 2011 International Society for Music Information Retrieval.