939 resultados para Fe3 immobilized
Resumo:
Two new hybrid molybdenum(IV) Mo3S7 cluster complexes derivatized with diimino ligands have been prepared by replacement of the two bromine atoms of [Mo3S7Br6]2− by a substituted bipyridine ligand to afford heteroleptic molybdenum(IV) Mo3S7Br4(diimino) complexes. Adsorption of the Mo3S7 cores from sample solutions on TiO2 was only achieved from the diimino functionalized clusters. The adsorbed Mo3S7 units were reduced on the TiO2 surface to generate an electrocatalyst that reduces the overpotential for the H2 evolution reaction by approximately 0.3 V (for 1 mA cm−2) with a turnover frequency as high as 1.4 s−1. The nature of the actual active molybdenum sulfide species has been investigated by X-ray photoelectron spectroscopy. In agreement with the electrochemical results, the modified TiO2 nanoparticles show a high photocatalytic activity for H2 production in the presence of Na2S/Na2SO3 as a sacrificial electron donor system.
Resumo:
A simple protein-DNA interaction analysis has been developed using a high-affinity/high-specificity zinc finger protein. In essence, purified protein samples are immobilized directly onto the surface of microplate wells, and fluorescently labeled DNA is added in solution. After incubation and washing, bound DNA is detected in a standard microplate reader. The minimum sensitivity of the assay is approximately 0.2 nM DNA. Since the detection of bound DNA is noninvasive and the protein-DNA interaction is not disrupted during detection, iterative readings may be taken from the same well, after successive alterations in interaction conditions, if required. In this respect, the assay may therefore be considered real time and permits appropriate interaction conditions to be determined quantitatively. The assay format is ideally suited to investigate the interactions of purified unlabeled DNA binding proteins in a high-throughput format.
Resumo:
A simple protein-DNA interaction analysis has been developed using both a high-affinity/high-specificity zinc finger protein and a low-specificity zinc finger protein with nonspecific DNA binding capability. The latter protein is designed to mimic background binding by proteins generated in randomized or shuffled gene libraries. In essence, DNA is immobilized onto the surface of microplate wells via streptavidin capture, and green fluorescent protein (GFP)-labeled protein is added in solution as part of a crude cell lysate or protein mixture. After incubation and washing, bound protein is detected in a standard microplate reader. The minimum sensitivity of the assay is approximately 0.4 nM protein. The assay format is ideally suited to investigate the interactions of DNA binding proteins from within crude cell extracts and/or mixtures of proteins that may be encountered in protein libraries generated by codon randomization or gene shuffling.
Resumo:
Natural myo-inositol phosphate antioxidants containing the 1,2,3-trisphosphate motif bind Fe3+ in the unstable penta-axial conformation.
Resumo:
Copper immobilized on a functionalized silica support is a good catalyst for the homocoupling of terminal alkynes. The so-called Glaser-Hay coupling reaction can be run in air with catalytic amounts of base. The copper catalyst is active for multiple substituted alkynes, in both polar and non-polar solvents, with good to excellent yields (75-95%). Depending on the alkyne, full conversion can be achieved within 3-24 h. The catalyst was characterized by TGA, inductively coupled plasma and X-ray photoelectron spectroscopy. Leaching tests confirm that the catalyst is and remains heterogeneous. Importantly, the overall reaction requires only alkyne and oxygen (in this case, air) as reagents, making this a clean catalytic oxidative coupling reaction. © 2012 John Wiley & Sons, Ltd.
Resumo:
A high sensitive glucose sensor using microfiber based Mach-Zehnder interferometer (MZI) is proposed. Microfiber is firstly immobilized with glucose oxidase (GOD) and then employed as sensing probe in MZI. By tracking the shift of the interference spectrum, a high sensitivity up to 2.46nm. (mg/ml)-1 is achieved at the glucose concentration range of 0-3mg/ml.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Die Produktion von Astaxanthin mittels Haematococcus pluvialis ist eines der wichtigsten Fachgebiete der Mikroalgen Biotechnologie. Kommerzielles Interesse ist zurückzuführen auf dessen Anwendungen als Pigment in der Tierzucht und neuerdings auch im Bereich des Gesundheitswesens, begründet auf seiner starken anti-oxidativen Wirkung. Allerdings begrenzen die Herausforderungen in der industriellen Produktion von H. pluvialis, in Bezug auf den Metabolismus der Alge wie gleichermaßen auch die Kultivierungsstrategie, immer noch den Markt für natürliches Astaxanthin. Die derzeit gängigen Kultivationstechnologien basieren auf Suspensionssystemen, welche weitgehende Nachteile mit sich führen, wie hoher Wasser-, Energie und Technikaufwand. Diese Probleme können durch die Anwendung einer immobilisierten Kultivation vermieden werden, weshalb diesem Verfahren immer mehr Aufmerksamkeit zu Teil wird. In dieser Arbeit wurde H. pluvialis als immobilisierte Kultur in einem Twin-Layer PSBR verwendet. Insgesamt wurden 26 verschiedene Arten von H. pluvialis gefunden, die als Biofilm wachsen und Astaxanthin produzieren konnten, wobei der Stamm CCAC 0125 zur weiteren Optimierung des Prozesses ausgewählt wurde. Biomasse und Astaxanthin Produktion stiegen zunehmenden in Abhängigkeit zu der Lichtintensität, bis einschließlich 1,015 µmol Photonen m-2 s-1, ohne Anzeichen von Photoinhibition. Maximale Biomasse Produktivität von 19.4 g m-2 d-1 wurde unter starken Lichtverhältnissen verzeichnet. Nährstofflimitierungen und Salinität unterstützen die Astaxanthin Produktion hinderten allerdings das Wachstum der Biomasse. Nichtdestotrotz, wurde die höchste Astaxanthin Produktivität von 0.507 g m-2 d-1 mit einem Biomasseanteil von 3.5% in der Trockenmasse durch starke Belichtung sowie Stickstoff- und Phosphatmangel erreicht. Diese Ergebnisse bestärken die Verwendung der immobilisierten Kultivation von H. pluvialis als Alternative zu den derzeitigen Technologien. Die Verknüpfung von hoher Biomasse mit der Produktion von Astaxanthin bei starkem Lichtintensitäten wurde nur durch die Anordnung in einem Biofilm ermöglicht. Es kann einen Durchbruch in der kommerziellen Herstellung von H. pluvialis darstellen, da hierbei das Vorziehen der Kulturen bei geringen Licht entfällt, was wiederum den derzeit verwendeten komplexen Zwei-Stufen Prozess stark vereinfacht.
Resumo:
A quitosana é produzida através de uma desacetilação alcalina da quitina, a qual é encontrada em exoesqueleto de crustáceos, parede celular de fungos e materiais biológicos. Calcula-se que os resÃduos de camarão apresentam de 5 a 7% do seu peso total na forma de quitina, sugerindo que estes sejam utilizados para obtenção do biopolÃmero. Os processos para obtenção destes biopolÃmeros consiste nas seguintes etapas: desmineralização, desproteinização e desodorização, obtendo-se assim, a quitina úmida. Após seca, passa por uma desacetilação quÃmica para a conversão em quitosana úmida, sendo purificada e posteriormente seca. A quitosana, por apresentar grupamentos amino livres em sua estrutura, é uma molécula capaz de formar complexos estáveis com cátions metálicos. O objetivo geral deste trabalho foi obter quitina a partir de resÃduos de camarão (Penaeus brasiliensis) com posterior produção de quitosana, e avaliar sua capacidade de complexação com Ãons Fe3+, em solução. A quitosana produzida foi caracterizada através do grau de desacetiliação e da massa molecular viscosimétrica, Para caracterização estrutural das amostras de quitosana, utilizaram-se espectrometria de infravermelho e espectrofotometria UV-VisÃvel, bem como para o complexo formado de quitosana e ferro. Para analisar a eficiência da remoção deste Ãon, foram feitas análises em espectrometria de absorção atômica em chama e em espectrofotometria UV-VisÃvel. Uma análise estatÃstica foi realizada para avaliar a percentagem de remoção do Ãon ferro das soluções, sendo utilizado um planejamento fatorial em dois nÃveis, tendo como variáveis independentes o pH do meio, a quantidade de quitosana adicionada, a granulometria da mesma e o tempo de reação. A quitosana apresentou grau de desacetilação de 87±2% e massa molecular viscosimétrica de 196±4kDa, sendo esses valores, comparáveis à quitosana disponÃvel comercialmente. Na melhor região de trabalho definida pela análise estatÃstica, obteve-se uma remoção máxima de 85 % do Ãon ferro das soluções.
Resumo:
© 2015 Silveira et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Resumo:
Shortages in supply of nutrients and freshwater for a growing human population are critical global issues. Traditional centralized sewage treatment can prevent eutrophication and provide sanitation, but is neither efficient nor sustainable in terms of water and resources. Source separation of household wastes, combined with decentralized resource recovery, presents a novel approach to solve these issues. Urine contains within 1 % of household waste water up to 80 % of the nitrogen (N) and 50 % of the phosphorus (P). Since microalgae are efficient at nutrient uptake, growing these organisms in urine might be a promising technology to concomitantly clean urine and produce valuable biomass containing the major plant nutrients. While state-of-the-art suspension systems for algal cultivation have mayor shortcomings in their application, immobilized cultivation on Porous Substrate Photobioreactors (PSBRs) might be a feasible alternative. The aim of this study was to develop a robust process for nutrient recovery from minimally diluted human urine using microalgae on PSBRs. The green alga Desmodesmus abundans strain CCAC 3496 was chosen for its good growth, after screening 96 algal strains derived from urine-specific isolations and culture collections. Treatment of urine, 1:1 diluted with tap water and without addition of nutrients, was performed at a light intensity of 600 μmol photons m-2 s-1 with 2.5 % CO2 and at pH 6.5. A growth rate of 7.2 g dry weight m-² day-1 and removal efficiencies for N and P of 13.1 % and 94.1 %, respectively, were determined. Pre-treatment of urine with activated carbon was found to eliminate possible detrimental effects of pharmaceuticals. These results provide a basis for further development of the technology at pilot-scale. If found to be safe in terms human and environmental health, the biomass produced from three persons could provide the P for annual production of 31 kg wheat grain and 16 kg soybean, covering the caloric demand in food for almost one month of the year for such a household. In combination with other technologies, PSBRs could thus be applied in a decentralized resource recovery system, contributing to locally close the link between sanitation and food production.
Resumo:
Since the dawn of its presence on earth, the human being has been able to exploit the enzymes for its subsistence. More recent is the meeting between the enzymatic processes and the urgent need for technologies that aim to preserve our planet. In this field nowadays enzymatic catalysis is tested either to depollution/remediation as well as waste disposal. The work presented in this thesis, regarding both these two topics, is tailored on two European projects (EU 2020), MADFORWATER and TERMINUS respectively. Firstly, production of micro- and nanocatalysts via immobilization of laccases (a lignin-degrader enzyme) is performed. In the second part of the thesis laccase is applied to a tertiary treatment of wastewater with the aim to degrade 9 pharmaceutical active compounds in batch reactors. Despite several optimizations, poor degradation is reached and we did not proceed with the study of different bioreactor setups. Therefore, the focus is moved to a project concerning the production of smart multi-layer plastic packaging containing enzymes to improve the possibilities of recycling. In this field shielded nanocatalysts produced via coating techniques able to interact with redox mediators are investigated. The target substrate in this second project is produced in laboratory (i.e. polyurethane like compounds), starting from monomers whose degradation had already been tested, as a proof of concept. The first enzyme studied is still the laccase.
Resumo:
Yeast flocculation (Saccharomyces cerevisiae) is one of the most important problems in fuel ethanol production. Yeast flocculation causes operational difficulties and increase in the ethanol cost. Proteolytic enzymes can solve this problem since it does not depend on these changes. The recycling of soluble papain and the immobilization of this enzyme on chitin or chitosan were studied. Some cross-linking agents were evaluated in the action of proteolytic activity of papain. The glutaraldehyde (0.1-10% w·v(-1)), polyethyleneimine (0.5% v·v(-1)), and tripolyphosphate (1-10% w·v(-1)) inactivated the enzyme in this range, respectively. Glutaraldehyde inhibited all treatments of papain immobilization. The chitosan cross-linked with TPP in 5 h of reaction showed the yield of active immobilized enzyme of 15.7% and 6.07% in chitosan treated with 0.1% PEI. Although these immobilizations have been possible, these levels have not been enough to cause deflocculation of yeast cells. Free enzyme was efficient for yeast deflocculation in dosages of 3 to 4 g·L(-1). Recycling of soluble papain by centrifugation was effective for 14 cycles with yeast suspension in time perfectly compatible to industrial conditions. The reuse of proteases applied after yeast suspension by additional yeast centrifugation could be an alternative to cost reduction of these enzymes.
Resumo:
The electrochemical properties of methylene blue immobilized on cellulose/TiO2 and mixed oxide SiO2/TiO2 matrices were investigated by means of cyclic voltammetry. The electron mediator property of the methylene blue was optimized using a factorial design, consisting of four factors in two levels. The experimental observations and data analyses on the system indicate that the lowest peak separation occurs for Sil/TiOAM, 1.0 mol L-1 KCl solution and 20 mV s-1 scan rate, while values of current ratio closest to unity were found for Cel/TiOAM independent of electrolyte concentration, 0.2 or 1.0 mol L-1, and scan rate, 20 mV s-1 or 60 mV s-1.
Resumo:
This paper presents an easy and practical procedure to obtain silica-based C-8 type sorbents for use in solid-phase extraction. The materials are prepared by depositing poly(methyloctylsiloxane), PMOS, on the silica support. Two different treatments for immobilization were used: thermal treatment or gamma irradiation. Suitable recoveries were obtained after pre-concentration of dilute solutions, at the ng/L level, of a mixture of pesticides, indicating the good performance of the materials.