980 resultados para Failure (mechanical)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of the temperature and stretching levels used in the stress-relieving treatment of cold-drawn eutectoid steel wires are evaluated with the aim of improving the stress relaxation behavior and the resistance to hydrogen embrittlement. Five industrial treatments are studied, combining three temperatures (330, 400, and 460 °C) and three stretching levels (38, 50 and 64% of the rupture load). The change of the residual stress produced by the treatments is taken into consideration to account for the results. Surface residual stresses allow us to explain the time to failure in standard hydrogen embrittlement tests

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GRC is a cementitious composite material made up of a cement mortar matrix and chopped glass fibers. Due to its outstanding mechanical properties, GRC has been widely used to produce cladding panels and some civil engineering elements. Impact failure of cladding panels made of GRC may occur during production if some tool falls onto the panel, due to stone or other objects impacting at low velocities or caused by debris projected after a blast. Impact failure of a front panel of a building may have not only an important economic value but also human lives may be at risk if broken pieces of the panel fall from the building to the pavement. Therefore, knowing GRC impact strength is necessary to prevent economic costs and putting human lives at risk. One-stage light gas gun is an impact test machine capable of testing different materials subjected to impact loads. An experimental program was carried out, testing GRC samples of five different formulations, commonly used in building industry. Steel spheres were shot at different velocities on square GRC samples. The residual velocity of the projectiles was obtained both using a high speed camera with multiframe exposure and measuring the projectile’s penetration depth in molding clay blocks. Tests were performed on young and artificially aged GRC samples to compare GRC’s behavior when subjected to high strain rates. Numerical simulations using a hydrocode were made to analyze which parameters are most important during an impact event. GRC impact strength was obtained from test results. Also, GRC’s embrittlement, caused by GRC aging, has no influence on GRC impact behavior due to the small size of the projectile. Also, glass fibers used in GRC production only maintain GRC panels’ integrity but have no influence on GRC’s impact strength. Numerical models have reproduced accurately impact tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanical stability of EWT solar cells deteriorates when holes are created in the wafer. Nevertheless, the chemical etching after the hole generation process improves the mechanical strength by removing part of the damage produced in the drilling process. Several sets of wafers with alkaline baths of different duration have been prepared. The mechanical strength has been measured by the ring on ring bending test and the failure stresses have been obtained through a FE simulation of the test. This paper shows the comparison of these groups of wafers in order to obtain an optimum value of the decreased thickness produced by the chemical etching

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quasi-monocrystalline silicon wafers have appeared as a critical innovation in the PV industry, joining the most favourable characteristics of the conventional substrates: the higher solar cell efficiencies of monocrystalline Czochralski-Si (Cz-Si) wafers and the lower cost and the full square-shape of the multicrystalline ones. However, the quasi-mono ingot growth can lead to a different defect structure than the typical Cz-Si process. Thus, the properties of the brand-new quasi-mono wafers, from a mechanical point of view, have been for the first time studied, comparing their strength with that of both Cz-Si mono and typical multicrystalline materials. The study has been carried out employing the four line bending test and simulating them by means of FE models. For the analysis, failure stresses were fitted to a three-parameter Weibull distribution. High mechanical strength was found in all the cases. The low quality quasi-mono wafers, interestingly, did not exhibit critical strength values for the PV industry, despite their noticeable density of extended defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present investigation addresses the overall and local mechanical performance of dissimilar joints of low carbon steel (CS) and stainless steel (SS) thin sheets achieved by laser welding in case of heat source displacement from the weld gap centreline towards CS. Microstructure characterization and residua! strain scanning, carried out by neutron diffraction, were used to assess the joints features. It was found that the heat source position influences the base metals dilution and the residua! stress field associated to the welding process; the transverse residual stress is smaller than for the longitudinal component, of magnitudes close to the parent CS yield strength. Furthermore, compressive transverse residual stresses were encountered at the SS-weld interface. The tensile behavior of the joint different zones assessed by using a video-image based system (VIC-2D) reveals that the residual stress field, together with the positive difference in yield between the weld metal and the base materials protects the joint from being piastically deformed. The tensile loadings of flat transverse specimens generate the strain localization and failure in CS, far away from the weld.En este trabajo se exponen los resultados de una investigacion sobre el comportamiento mecanico de soldaduras disimiles acero inoxidable-acero al carbono, realizadas para unir chapas delgadas, desplazando la fuente de calor del eje longitudinal de la union soldada por laser sobre el acero al carbono. Se han determinado las caracteristicas microestructurales de la union soldada, las tensiones residuales generadas (mediante difraccion de neutrones) y las curvas tension-deformacion locales y globales, mediante medidas locales de deformacion empleando el sistema VIC-2D "video image correlation". El desplazamiento de la fuente de calor infiuye en la dilution de los metales base y el campo de tensiones residuales asociado al proceso de soldeo; las tensiones residuales medidas en direction longitudinal se aproximan al limite elastico del acero al carbono, mientras que las tensiones residuales transversales son menores, e incluso de compresion. El ensayo a traccion de la union soldada revela que las tensiones residuales y la diferencia de limite elastico entre los metales base y la soldadura propician que la rotura se produzca por inestabilidad plastica del acero al carbono, lejos de la soldadura, sin que la union plastifique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drilling process on wafers to produce EWT or MWT solar cells is a critical fabrication step, which affects on their mechanical stability. The amount of damage introduced during drilling process depends on the density of holes, their size and the chemical process applied afterwards. To quantify the relation between size of the holes and reduction of mechanical strength, several sets of wafers have been prepared, with different hole diameter. The mechanical strength of these sets has been measured by the ring on ring bending test, and the stress state in the moment of failure has been deduced by FE simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present study is the estimation of the depth to which the wire sawing process causes damage to the wafer surfaces. Previous analyses were carried out by means of the four line bending test. The characteristic of this test implied that the failure could be due to surface cracks located in the central zone of the wafer or near the edges. In order to evaluate the influence of the edge or surface cracks a new study has been carried out using the ball/ring on ring test. Description and results of the tests are presented. The preliminary analysis of the failure stress using analytical methods confirms the expected results. A Finite Element model developed to get more information of the test results is also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical behavior of three tungsten (W) alloys with vanadium (V) and lanthana (La2O3) additions (W–4%V, W–1%La2O3, W–4%V–1%La2O3) processed by hot isostatic pressing (HIP) have been compared with pure-W to analyze the influence of the dopants. Mechanical characterization was performed by three point bending (TPB) tests in an oxidizing air atmosphere and temperature range between 77 (immersion tests in liquid nitrogen) and 1273 K, through which the fracture toughness, flexural strength, and yield strength as function of temperature were obtained. Results show that the V and La2O3 additions improve the mechanical properties and oxidation behavior, respectively. Furthermore, a synergistic effect of both dopants results in an extraordinary increase of the flexure strength, fracture toughness and resistance to oxidation compared to pure-W, especially at higher temperatures. In addition, a new experimental method was developed to obtain a very small notch tip radius (around 5–7 μm) and much more similar to a crack through the use of a new machined notch. The fracture toughness results were lower than those obtained with traditional machining of the notch, which can be explained with electron microscopy, observations of deformation in the rear part of the notch tip. Finally, scanning electron microscopy (SEM) examination of the microstructure and fracture surfaces was used to determine and analyze the relationship between the macroscopic mechanical properties and the micromechanisms of failure involved, depending on the temperature and the dispersion of the alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-length ultrafine-grained (UFG) Ti rods are produced by equal-channel angular pressing via the conform scheme (ECAP-C) at 200 °C, which is followed by drawing at 200 °C. The evolution of microstructure, macrotexture, and mechanical properties (yield strength, ultimate tensile strength, failure stress, uniform elongation, elongation to failure) of pure Ti during this thermo-mechanical processing is studied. Special attention is also paid to the effect of microstructure on the mechanical behavior of the material after macrolocalization of plastic flow. The number of ECAP-C passes varies in the range of 1–10. The microstructure is more refined with increasing number of ECAP-C passes. Formation of homogeneous microstructure with a grain/subgrain size of 200 nm and its saturation after 6 ECAP-C passes are observed. Strength properties increase with increasing number of ECAP passes and saturate after 6 ECAP-C passes to a yield strength of 973 MPa, an ultimate tensile strength of 1035 MPa, and a true failure stress of 1400 MPa (from 625, 750, and 1150 MPa in the as-received condition). The true strain at failure failure decreases after ECAP-C processing. The reduction of area and true strain to failure values do not decrease after ECAP-C processing. The sample after 6 ECAP-C passes is subjected to drawing at 200¯C resulting in reduction of a grain/subgrain size to 150 nm, formation of (10 View the MathML source1¯0) fiber texture with respect to the rod axis, and further increase of the yield strength up to 1190 MPa, the ultimate tensile strength up to 1230 MPa and the true failure stress up to 1600 MPa. It is demonstrated that UFG CP Ti has low resistance to macrolocalization of plastic deformation and high resistance to crack formation after necking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research is an exhaustive study of the microstructure and of the stress-strain curves of structural steel S460N at temperatures typical of a fire. It includes a fractographic study of the fracture suifaces of cylindrical specimens, tensile tested at different fire scenarios, explaining the relationship between the failure micromechanisms and temperature. The paper ends with the comparison between the experimentally found strain-stress curves with that one's proposed by the EUROCODE EC3, resulting that in the case of steel S460N these are on the side ofsafety.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research is an exhaustive study of the microstructure and of the stress-strain curves of structural steel S460N at temperatures typical of a fire. It includes a fractographic study of the fracture suifaces of cylindrical specimens, tensile tested at different fire scenarios, explaining the relationship between the failure micromechanisms and temperature. The paper ends with the comparison between the experimentally found strain-stress curves with that one's proposed by the EUROCODE EC3, resulting that in the case of steel S460N these are on the side ofsafety.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los ensayos virtuales de materiales compuestos han aparecido como un nuevo concepto dentro de la industria aeroespacial, y disponen de un vasto potencial para reducir los enormes costes de certificación y desarrollo asociados con las tediosas campañas experimentales, que incluyen un gran número de paneles, subcomponentes y componentes. El objetivo de los ensayos virtuales es sustituir algunos ensayos por simulaciones computacionales con alta fidelidad. Esta tesis es una contribución a la aproximación multiescala desarrollada en el Instituto IMDEA Materiales para predecir el comportamiento mecánico de un laminado de material compuesto dadas las propiedades de la lámina y la intercara. La mecánica de daño continuo (CDM) formula el daño intralaminar a nivel constitutivo de material. El modelo de daño intralaminar se combina con elementos cohesivos para representar daño interlaminar. Se desarrolló e implementó un modelo de daño continuo, y se aplicó a configuraciones simples de ensayos en laminados: impactos de baja y alta velocidad, ensayos de tracción, tests a cortadura. El análisis del método y la correlación con experimentos sugiere que los métodos son razonablemente adecuados para los test de impacto, pero insuficientes para el resto de ensayos. Para superar estas limitaciones de CDM, se ha mejorado la aproximación discreta de elementos finitos enriqueciendo la cinemática para incluir discontinuidades embebidas: el método extendido de los elementos finitos (X-FEM). Se adaptó X-FEM para un esquema explícito de integración temporal. El método es capaz de representar cualitativamente los mecanismos de fallo detallados en laminados. Sin embargo, los resultados muestran inconsistencias en la formulación que producen resultados cuantitativos erróneos. Por último, se ha revisado el método tradicional de X-FEM, y se ha desarrollado un nuevo método para superar sus limitaciones: el método cohesivo X-FEM estable. Las propiedades del nuevo método se estudiaron en detalle, y se concluyó que el método es robusto para implementación en códigos explícitos dinámicos escalables, resultando una nueva herramienta útil para la simulación de daño en composites. Virtual testing of composite materials has emerged as a new concept within the aerospace industry. It presents a very large potential to reduce the large certification costs and the long development times associated with the experimental campaigns, involving the testing of a large number of panels, sub-components and components. The aim of virtual testing is to replace some experimental tests by high-fidelity numerical simulations. This work is a contribution to the multiscale approach developed in Institute IMDEA Materials to predict the mechanical behavior of a composite laminate from the properties of the ply and the interply. Continuum Damage Mechanics (CDM) formulates intraply damage at the the material constitutive level. Intraply CDM is combined with cohesive elements to model interply damage. A CDM model was developed, implemented, and applied to simple mechanical tests of laminates: low and high velocity impact, tension of coupons, and shear deformation. The analysis of the results and the comparison with experiments indicated that the performance was reasonably good for the impact tests, but insuficient in the other cases. To overcome the limitations of CDM, the kinematics of the discrete finite element approximation was enhanced to include mesh embedded discontinuities, the eXtended Finite Element Method (X-FEM). The X-FEM was adapted to an explicit time integration scheme and was able to reproduce qualitatively the physical failure mechanisms in a composite laminate. However, the results revealed an inconsistency in the formulation that leads to erroneous quantitative results. Finally, the traditional X-FEM was reviewed, and a new method was developed to overcome its limitations, the stable cohesive X-FEM. The properties of the new method were studied in detail, and it was demonstrated that the new method was robust and can be implemented in a explicit finite element formulation, providing a new tool for damage simulation in composite materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present investigation addresses the overall and local mechanical performance of dissimilar joints of low carbon steel (CS) and stainless Steel (SS) thin sheets achieved by laser welding in case of heat source displacement from the weld gap centreline towards CS. Welding was performed on a Nd:YAG laser DY033 (3300 W) in a continuos wave (CW), keyhole mode. The tensile behavior of the joint different zones assessed by using a video-image based system (VIC-2D) reveals that the residual stress field, together with the positive difference in yield between the weld metal and the base materials protects the joint from being plastically deformed. The tensile loadings of flat transverse specimens generate the strain localization and failure in CS, far away from the weld.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluates the mechanical behaviour of an Y2O3-dispersed tungsten (W) alloy and compares it to a pure W reference material. Both materials were processed via mechanical alloying (MA) and subsequent hot isostatic pressing (HIP). We performed non-standard three-point bending (TPB) tests in both an oxidising atmosphere and vacuum across a temperature range from 77 K, obtained via immersion in liquid nitrogen, to 1473 K to determine the mechanical strength, yield strength and fracture toughness. This research aims to evaluate how the mechanical behaviour of the alloy is affected by oxides formed within the material at high temperatures, primarily from 873 K, when the materials undergo a massive thermal degradation. The results indicate that the alloy is brittle to a high temperature (1473 K) under both atmospheres and that the mechanical properties degrade significantly above 873 K. We also used Vickers microhardness tests and the dynamic modulus by impulse excitation technique (IET) to determine the elastic modulus at room temperature. Moreover, we performed nanoindentation tests to determine the effect of size on the hardness and elastic modulus; however, no significant differences were found. Additionally, we calculated the relative density of the samples to assess the porosity of the alloy. Finally, we analysed the microstructure and fracture surfaces of the tested materials via field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). In this way, the relationship between the macroscopic mechanical properties and micromechanisms of failure could be determined based on the temperature and oxides formed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this research is the mechanical characterisation of multicrystalline silicon crystallised from silicon feedstock with a high content of aluminium for photovoltaic applications. The mechanical strength, fracture toughness and elastic modulus were measured at different positions within the multicrystalline silicon block to quantify the impact of the segregation of impurities on these mechanical properties. Aluminium segregated to the top of the block and caused extensive micro-cracking of the silicon matrix due to the thermal mismatch between silicon and the aluminium inclusions. Silicon nitride inclusions reduced the fracture toughness and caused failure by radial cracking in its surroundings due to its thermal mismatch with silicon. However, silicon carbide increased the fracture toughness and elastic modulus of silicon.