930 resultados para Facial reconstruction
Resumo:
Diffuse optical tomographic image reconstruction uses advanced numerical models that are computationally costly to be implemented in the real time. The graphics processing units (GPUs) offer desktop massive parallelization that can accelerate these computations. An open-source GPU-accelerated linear algebra library package is used to compute the most intensive matrix-matrix calculations and matrix decompositions that are used in solving the system of linear equations. These open-source functions were integrated into the existing frequency-domain diffuse optical image reconstruction algorithms to evaluate the acceleration capability of the GPUs (NVIDIA Tesla C 1060) with increasing reconstruction problem sizes. These studies indicate that single precision computations are sufficient for diffuse optical tomographic image reconstruction. The acceleration per iteration can be up to 40, using GPUs compared to traditional CPUs in case of three-dimensional reconstruction, where the reconstruction problem is more underdetermined, making the GPUs more attractive in the clinical settings. The current limitation of these GPUs in the available onboard memory (4 GB) that restricts the reconstruction of a large set of optical parameters, more than 13, 377. (C) 2010 Society of Photo-Optical Instrumentation Engineers. DOI: 10.1117/1.3506216]
Resumo:
The X-ray structure of Image and MNDO optimized geometries of related 7-norbornenone derivatives show a clear tilt of the carbonyl bridge away from the C=C double bond. The preferred reduction from the more hindered face of the diester reveals the electron/electrostatic origin of π - facial selectivity in these systems. X-ray structure and MNDO calculations reveal the dominance of electronic effects in determining the π-facial selectivity in 4a.
Resumo:
Purpose: Fast reconstruction of interior optical parameter distribution using a new approach called Broyden-based model iterative image reconstruction (BMOBIIR) and adjoint Broyden-based MOBIIR (ABMOBIIR) of a tissue and a tissue mimicking phantom from boundary measurement data in diffuse optical tomography (DOT). Methods: DOT is a nonlinear and ill-posed inverse problem. Newton-based MOBIIR algorithm, which is generally used, requires repeated evaluation of the Jacobian which consumes bulk of the computation time for reconstruction. In this study, we propose a Broyden approach-based accelerated scheme for Jacobian computation and it is combined with conjugate gradient scheme (CGS) for fast reconstruction. The method makes explicit use of secant and adjoint information that can be obtained from forward solution of the diffusion equation. This approach reduces the computational time many fold by approximating the system Jacobian successively through low-rank updates. Results: Simulation studies have been carried out with single as well as multiple inhomogeneities. Algorithms are validated using an experimental study carried out on a pork tissue with fat acting as an inhomogeneity. The results obtained through the proposed BMOBIIR and ABMOBIIR approaches are compared with those of Newton-based MOBIIR algorithm. The mean squared error and execution time are used as metrics for comparing the results of reconstruction. Conclusions: We have shown through experimental and simulation studies that Broyden-based MOBIIR and adjoint Broyden-based methods are capable of reconstructing single as well as multiple inhomogeneities in tissue and a tissue-mimicking phantom. Broyden MOBIIR and adjoint Broyden MOBIIR methods are computationally simple and they result in much faster implementations because they avoid direct evaluation of Jacobian. The image reconstructions have been carried out with different initial values using Newton, Broyden, and adjoint Broyden approaches. These algorithms work well when the initial guess is close to the true solution. However, when initial guess is far away from true solution, Newton-based MOBIIR gives better reconstructed images. The proposed methods are found to be stable with noisy measurement data. (C) 2011 American Association of Physicists in Medicine. DOI: 10.1118/1.3531572]
Resumo:
Tutte (1979) proved that the disconnected spanning subgraphs of a graph can be reconstructed from its vertex deck. This result is used to prove that if we can reconstruct a set of connected graphs from the shuffled edge deck (SED) then the vertex reconstruction conjecture is true. It is proved that a set of connected graphs can be reconstructed from the SED when all the graphs in the set are claw-free or all are P-4-free. Such a problem is also solved for a large subclass of the class of chordal graphs. This subclass contains maximal outerplanar graphs. Finally, two new conjectures, which imply the edge reconstruction conjecture, are presented. Conjecture 1 demands a construction of a stronger k-edge hypomorphism (to be defined later) from the edge hypomorphism. It is well known that the Nash-Williams' theorem applies to a variety of structures. To prove Conjecture 2, we need to incorporate more graph theoretic information in the Nash-Williams' theorem.
Resumo:
Computerized tomography is an imaging technique which produces cross sectional map of an object from its line integrals. Image reconstruction algorithms require collection of line integrals covering the whole measurement range. However, in many practical situations part of projection data is inaccurately measured or not measured at all. In such incomplete projection data situations, conventional image reconstruction algorithms like the convolution back projection algorithm (CBP) and the Fourier reconstruction algorithm, assuming the projection data to be complete, produce degraded images. In this paper, a multiresolution multiscale modeling using the wavelet transform coefficients of projections is proposed for projection completion. The missing coefficients are then predicted based on these models at each scale followed by inverse wavelet transform to obtain the estimated projection data.
Resumo:
The 1:1 and 1:2 cooper(II) complexes with the tridentate compound bis(benzimidazol-2-ylmethyl)amine (L(1)) and its benzimidazole (L(2)) and amine (L(3)) N-methyl-substituted derivatives have been prepared and their spectroscopic properties studied. While the 1:1 complexes are of the type CuLX(2) nH(2)O (X = C/O-4(-), NO3-, Cl- or Br-), the 1:2 complexes are of the type CuL(2) (ClO4)(2) nH(2)O (L = L(1) or L(3), n = 0-4). In all these complexes L acts as a tridentate ligand with the amine nitrogen and both the benzimidazole nitrogens co-ordinating to Cu-II. The complex [CuL(2)(1)][ClO4](2) 2H(2)O crystallises in the monoclinic space group P2(1)/c with a = 9.828(2), b = 9.546(2) and c = 19.906(2) Angstrom and beta = 95.71(1)degrees, for Z = 2. The R value is 0.0635 for 2180 significant reflections. The copper(II) ion has an elongated octahedral geometry with four equatorial benzimidazole and two long-distance axial amine N donors. The Cu-N-bzim and Cu-N-amine distances are 2.011(4) and 2.597(6) Angstrom respectively. Factors favouring facial co-ordination to tridentate ligands are discussed. The 1:1 complexes involve meridonal co-ordination of the ligands, with square-based geometry as revealed by ligand-field and EPR spectral properties. The NMe substitution as in CuL(3)(ClO4)(2) confers low V ($) over tilde$$(max) and high E(1/2) for the cu(II)-Cu-I couple. Most of the 1:1 complexes are less reversible but exhibit E(1/2) values more positive than those of the corresponding 1:2 complexes.
Resumo:
A claw is an induced subgraph isomorphic to K-1,K-3. The claw-point is the point of degree 3 in a claw. A graph is called p-claw-free when no p-cycle has a claw-point on it. It is proved that for p greater than or equal to 4, p-claw-free graphs containing at least one chordless p-cycle are edge reconstructible. It is also proved that chordal graphs are edge reconstructible. These two results together imply the edge reconstructibility of claw-free graphs. A simple proof of vertex reconstructibility of P-4-reducible graphs is also presented. (C) 1995 John Wiley and Sons, Inc.
Resumo:
In this work, a procedure is presented for the reconstruction of biological organs from image sequences obtained through CT-scan. Although commercial software, which can accomplish this task, are readily available, the procedure presented here needs only free software. The procedure has been applied to reconstruct a liver from the scan data available in literature. 3D biological organs obtained this way can be used for the finite element analysis of biological organs and this has been demonstrated by carrying out an FE analysis on the reconstructed liver.
Resumo:
We address the problem of exact complex-wave reconstruction in digital holography. We show that, by confining the object-wave modulation to one quadrant of the frequency domain, and by maintaining a reference-wave intensity higher than that of the object, one can achieve exact complex-wave reconstruction in the absence of noise. A feature of the proposed technique is that the zero-order artifact, which is commonly encountered in hologram reconstruction, can be completely suppressed in the absence of noise. The technique is noniterative and nonlinear. We also establish a connection between the reconstruction technique and homomorphic signal processing, which enables an interpretation of the technique from the perspective of deconvolution. Another key contribution of this paper is a direct link between the reconstruction technique and the two-dimensional Hilbert transform formalism proposed by Hahn. We show that this connection leads to explicit Hilbert transform relations between the magnitude and phase of the complex wave encoded in the hologram. We also provide results on simulated as well as experimental data to validate the accuracy of the reconstruction technique. (C) 2011 Optical Society of America
Resumo:
We present experimental investigation of a new reconstruction method for off-axis digital holographic microscopy (DHM). This method effectively suppresses the object auto-correlation, commonly called the zero-order term, from holographic measurements, thereby suppressing the artifacts generated by the intensities of the two beams employed for interference from complex wavefield reconstruction. The algorithm is based on non-linear filtering, and can be applied to standard DHM setups, with realistic recording conditions. We study the applicability of the technique under different experimental configurations, such as topographic images of microscopic specimens or speckle holograms.
Resumo:
With the introduction of 2D flat-panel X-ray detectors, 3D image reconstruction using helical cone-beam tomography is fast replacing the conventional 2D reconstruction techniques. In 3D image reconstruction, the source orbit or scanning geometry should satisfy the data sufficiency or completeness condition for exact reconstruction. The helical scan geometry satisfies this condition and hence can give exact reconstruction. The theoretically exact helical cone-beam reconstruction algorithm proposed by Katsevich is a breakthrough and has attracted interest in the 3D reconstruction using helical cone-beam Computed Tomography.In many practical situations, the available projection data is incomplete. One such case is where the detector plane does not completely cover the full extent of the object being imaged in lateral direction resulting in truncated projections. This result in artifacts that mask small features near to the periphery of the ROI when reconstructed using the convolution back projection (CBP) method assuming that the projection data is complete. A number of techniques exist which deal with completion of missing data followed by the CBP reconstruction. In 2D, linear prediction (LP)extrapolation has been shown to be efficient for data completion, involving minimal assumptions on the nature of the data, producing smooth extensions of the missing projection data.In this paper, we propose to extend the LP approach for extrapolating helical cone beam truncated data. The projection on the multi row flat panel detectors has missing columns towards either ends in the lateral direction in truncated data situation. The available data from each detector row is modeled using a linear predictor. The available data is extrapolated and this completed projection data is backprojected using the Katsevich algorithm. Simulation results show the efficacy of the proposed method.