959 resultados para FUEL CELLS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Catalyst-doped sodium aluminum hydrides have been intensively studied as solid hydrogen carriers for onboard proton-exchange membrane (PEM) fuel cells. Although the importance of catalyst choice in enhancing kinetics for both hydrogen uptake and release of this hydride material has long been recognized, the nature of the active species and the mechanism of catalytic action are unclear. We have shown by inelastic neutron scattering (INS) spectroscopy that a volatile molecular aluminum hydride is formed during the early stage of H-2 re-eneration of a depleted, catalyst-doped sodium aluminum hydride. Computational modeling of the INS spectra suggested the formation of AlH3 and oligomers (AlH3)(n) (Al2H6, Al3H9, and Al4H12 clusters), which are pertinent to the mechanism of hydrogen storage. This paper demonstrates, for the first time, the existence of these volatile species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dehydriding and rehydriding of sodium aluminium hydride, NaAlR4, is kinetically enhanced and rendered reversible in the solid state upon doping with a small amount of catalyst species, such as titanium, zirconium or tin. The catalyst doped hydrides appear to be good candidates for development as hydrogen carriers for onboard proton exchange membrane (PEM) fuel cells because of their relatively low operation temperatures (120-150 degrees C) and high hydrogen carrying capacities (4-5 wt.%). However, the nature of the active catalyst species and the mechanism of catalytic action are not yet known. In particular, using combinations of Ti and Sri compounds as dopants, a cooperative catalyst effect of the metals Ti and Sn in enhancing the hydrogen uptake and release kinetics is hereby reported. In this paper, characterization techniques including XRD, XPS, TEM, EDS and SEM have been applied on this material. The results suggest that the solid state phase changes during the hydriding and dehydriding processes are assisted through the interaction of a surface catalyst. A mechanism is proposed to explain the catalytic effect of the Sn/Ti double dopants on this hydride.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we explore classification techniques for ill-posed problems. Two classes are linearly separable in some Hilbert space X if they can be separated by a hyperplane. We investigate stable separability, i.e. the case where we have a positive distance between two separating hyperplanes. When the data in the space Y is generated by a compact operator A applied to the system states ∈ X, we will show that in general we do not obtain stable separability in Y even if the problem in X is stably separable. In particular, we show this for the case where a nonlinear classification is generated from a non-convergent family of linear classes in X. We apply our results to the problem of quality control of fuel cells where we classify fuel cells according to their efficiency. We can potentially classify a fuel cell using either some external measured magnetic field or some internal current. However we cannot measure the current directly since we cannot access the fuel cell in operation. The first possibility is to apply discrimination techniques directly to the measured magnetic fields. The second approach first reconstructs currents and then carries out the classification on the current distributions. We show that both approaches need regularization and that the regularized classifications are not equivalent in general. Finally, we investigate a widely used linear classification algorithm Fisher's linear discriminant with respect to its ill-posedness when applied to data generated via a compact integral operator. We show that the method cannot stay stable when the number of measurement points becomes large.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proton exchange membranes (PEM’s) are currently under investigation for membrane water electrolysis (PEMWE) to deliver efficient production of the high purity hydrogen needed to supply emerging clean-energy technologies such as hydrogen fuel cells. The microblock aromatic ionomer described in this work achieves high mechanical strength in an aqueous environment as a result of its designed, biphasic morphology and displays many of the qualities required in a PEM. The new ionomer membrane thus shows good proton conductivity (63 mS cm−1 at 80 °C and 100% RH), while retaining mechanical integrity under high temperature, hydrated conditions. Testing in electrolysis has shown good energy efficiency (1.67 V at 1 A cm−2 and 80 °C, corresponding to 4 kWh/Nm3 of H2), making this ionomer a potential candidate for commercial application in PEMWE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work describes the synthesis of platinum nanoparticles followed by their electrophoretic deposition onto transparent fluorine-doped tin oxide electrodes. The nano-Pt-modified electrodes were characterized by voltammetric studies in acidic solutions showing a great electrocatalytic behavior towards H(+) reduction being very interesting for fuel cell applications. Morphological characterization was performed by atomic force microscopy on different modified electrodes showing a very rough surface which can be tuned by means of time of deposition. Also, nickel hydroxide thin films were galvanostatically grown onto these electrodes showing an interesting electrochemical behavior as sharper peaks, indicating a faster ionic exchange from the electrolyte to the film.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ethanol oxidation reaction (EOR) was investigated using PtSnCe/C electrocatalysts in different mass ratios (72:23:5, 68:22:10 and 64:21:15) that were prepared by the polymeric precursor method. Transmission electron microscopy (TEM) showed that the particles ranged in size from approximately 2 to 5 nm. Changes in the net parameters observed for Pt suggest the incorporation of Sn and Ce into the Pt crystalline network with the formation of an alloy between Pt, Sn and/or Ce. Among the PtSnCe catalysts investigated, the 68:22:10 composition showed the highest activity toward ethanol oxidation, and the current time curves obtained in the presence of ethanol in acidic media showed a current density 50% higher than that observed for commercial PtSn/C (E-Tek). During the experiments performed on single direct ethanol fuel cells, the power density for the PtSnCe/C 68:22:10 anode was nearly 40% higher than the one obtained using the commercial catalyst. Data from Fourier transform infrared (FTIR) spectroscopy showed that the observed behavior for ethanol oxidation may be explained in terms of a double mechanism. The presence of Sn and Ce seems to favor CO oxidation, since they produce an oxygen-containing species to oxidize acetaldehyde to acetic acid. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although Pt has been thoroughly studied regarding its activity for the borohydride oxidation reaction (BOR), the BOR mechanism at Pt remains unclear: Depending on the applied potential, spontaneous BH(4)(-) hydrolysis can compete with the direct BOR. The goal of the present work is to provide more insight into the behavior of smooth Pt electrodes toward the BOR, by coupling in situ infrared reflectance spectroscopy with electrochemistry. The measurements were performed on a Pt electrode in 1 M NaOH/1 M NaBH(4), so as to detect the reaction intermediate species generated as a function of the applied potential. Several bands were monitored in the B-H ((v) over bar approximate to 1180, 1080, and 972 cm(-1)) and B-O ((v) over bar = 1325 and similar to 1425 cm(-1)) bond regions upon increased electrode polarization. These absorption bands, which appear sequentially and were already detected for similar measurements on Au electrodes, are assigned to BH(3), BH(2), and BO(2)(-) species. In light of these experimental data and previous results obtained in our group for Pt- or Au-based electrodes, possible initial elementary steps of the BOR on platinum electrodes are proposed and discussed according to the relevant literature data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PtSn/CeO(2)-C electrocatalyst was prepared in a single step by an alcohol-reduction process using ethylene glycol as solvent and reducing agent and CeO(2) (15 wt%) and Vulcan XC72 (85 wt%) as supports. The performance for ethanol oxidation was investigated by cyclic voltammetry and in situ FTIR spectroscopy. The electrocatalytic activity of the PtSn/CeO(2)-C electrocatalyst was higher than that of the PtSn/C electrocatalyst. FTIR studies for ethanol oxidation on PtSn/C electrocatalyst showed that acetaldehyde and acetic acid were the principal products formed, while on PtSn/CeO(2)-C electrocatalyst the principal products formed were CO(2) and acetic acid.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The performance of La(2-x)Ce(x)Cu(1-y)Zn(y)O(4) perovskites as catalysts for the high temperature water-gas shift reaction (H T-W G S R) was investigated. The catalysts were characterized by EDS, XRD, BET surface area, TPR, and XANES. The results showed that all the perovskites exhibited the La(2)CuO(4) orthorhombic structure, so the Pechini method is suitable for the preparation of pure perovskite. However, the La(1.90)Ce(0.10)CuO(4) perovskite alone, when calcined at 350/700 degrees C, also showed a (La(0.935)Ce(0.065))(2)CuO(4) perovskite with tetragonal structure, which produced a surface area higher than the other perovskites. The perovskites that exhibited the best catalytic performance were those calcined at 350/700 degrees C and, among these, La(1.90)Ce(0.10)CuO(4) was outstanding, probably because of the high surface area associated with the presence of the (La(0.935)Ce(0.065))(2)CuO(4) perovskite with tetragonal structure and orthorhombic La(2)CuO(4) phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The performance of noble metal (Pt, Ru, Ir)-promoted Co/MgAl(2)O(4) catalysts for the steam reforming of ethanol was investigated. The catalysts were characterized by energy-dispersive X-ray spectroscopy, Xray diffraction, UV-vis diffuse reflectance spectroscopy, temperature-programmed reduction, temperature-programmed oxidation and X-ray absorption near edge structure (XANES). The results showed that the formation of inactive cobalt aluminate was suppressed by the presence of a MgAl(2)O(4) spinel phase. The effects of the noble metals included a marked lowering of the reduction temperatures of the cobalt surface species interacting with the support. It was seen that the addition of noble metal stabilized the Co sites in the reduced state throughout the reaction. Catalytic performance was enhanced in the promoted catalysts, particularly CoRu/MgAl(2)O(4), which showed the highest selectivity for H(2) production. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oxygen reduction reaction (ORR) was investigated on carbon-supported Pt-Co nanoparticle electrocatalysts with low Pt content in alkaline electrolyte. High resolution transmission electron microscopy, In situ X-ray absorption spectroscopy, and X-ray diffraction analysis evidenced large structural differences of the Pt-Co particles depending oil the route of the catalyst synthesis. It was demonstrated that although the Pt-Co materials contain low amounts of Pt, they show very good activities when the particles are formed by a Pt-rich shell and a Pt-Co core, which was obtained after submitting the electrocatalyst to a potential cycling in acid electrolyte. The high activity of this material was due to a major contribution from its higher surface area, as a result of the leaching of the Co atoms from the particle Surface. Furthermore, its high activity was ascribed to a minor contribution from the electronic interaction of the Pt atoms, at the particle surface, and the Co atoms located in the beneath layer, lowering the Pt cl-band center. As these electrocatalysts presented high activity for the ORR with low Pt content, the cost of the fuel cell cathodes could be lowered considerably. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electro-oxidation of methanol at supported tungsten carbide (WC) nanoparticles in sulfuric acid solution was studied using cyclic voltammetry, potentiostatic measurements, and differential electrochemical mass spectroscopy (DEMS). The catalyst was prepared by a sonochemical method and characterized by X-ray diffraction. Over the WC catalyst, the oxidation of methanol (1 M in a sulfuric acid electrolyte) begins at a potential below 0.5 V/RHE during the anodic sweep. During potentiostatic measurements, a maximum current of 0.8 mA mg(-1) was obtained at 0.4 V. Measurements of DEMS showed that the methanol oxidation reaction over tungsten carbide produces CO2 (m/z=44); no methylformate (m/z=60) was detected. These results are discussed in the context of the continued search for alternative materials for the anode catalyst of direct methanol fuel cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work investigates the effects of carbon-supported Pt, Pt-Ru, Pt-Rh and Pt-Ru-Rh alloy electrocatalysts oil the yields of CO2 and acetic acid as electro-oxidation products of ethanol. Electronic and structural features of these metal alloys were studied by in situ X-ray absorption spectroscopy (XAS). The electrochemical activity was investigated by polarization experiments and the reaction intermediates and products were analyzed by in situ Fourier Transform Infra-Red Spectroscopy (FTIR). Electrochemical stripping of CO. which is one of the adsorbed intermediates, presented a faster oxidation kinetics on the Pt-Ru electrocatalyst, and similar rates of reaction on Pt-Rh and Pt. The electrochemical current of ethanol oxidation showed a higher value and the onset potential was less positive oil Pt-Ru. However, in situ FTIR spectra evidenced that the CO2/acetic acid ratio is higher for the materials with Rh, mainly at lower potentials. These results indicate that the Ru atoms act mainly by providing oxygenated species for the oxidation of ethanol intermediates, and point out ail important role of Rh on the C-C bond dissociation. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ordered intermetallic phases of Pt with several transition metals have been prepared and their electrocatalytic properties studied. In light of these tests it is proposed that these catalysts could be used as electrodes in fuel cells, as they combine an excellent capacity to adsorb organic fuels at the Pt sites with low susceptibility to being poisoned by intermediates and reaction products at the transition-metal sites. An experimental procedure used to obtain the four intermetallic phases Pt-M (M = Mn, Pb, Sb and Sn) is described. The phases thus produced were characterized by X-ray diffraction, scanning electron microscopy with surface analysis by energy-dispersive X-ray spectrometry, scanning tunneling microscopy and X-ray photoelectron spectroscopy. The data thus obtained support the conclusion that the method described here is highly effective for the preparation of Pt-M phases featuring a range of structural and electronic modifications that will allow a useful relation to be established between their physicochemical properties and predicted electrocatalytic activity. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes an investigation on CuO and CuO-ZnO catalysts supported on CeO(2) and CeO(2)-La(2)O(3) oxides, which were designed for the low temperature water-gas shift reaction (WGSR). Bulk catalysts were prepared by co-precipitation of metal nitrates and characterized by energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), surface area (by the BET method), X-ray photoelectron spectroscopy (XPS), and in situ X-ray absorption near edge structure (XANES). The catalysts` activities were tested in the forward WGSR, and the CuO/CeO(2) catalyst presented the best catalytic performance. The reasons for this are twofold: (1) the presence of Zn inhibits the interaction between Cu and Ce ions, and (2) lanthanum oxide forms a solid solution with cerium oxide, which will cause a decrease in the surface area of the catalysts. Also the CuO/CeO(2) catalyst presented the highest Cu content on the surface, which could influence its catalytic behavior. Additionally, the Cu and Cu(1+) species could influence the catalytic activity via a reduction-oxidation mechanism, corroborating to the best catalytic performance of the Cu/Ce catalyst. (c) 2010 Elsevier B.V. All rights reserved.