996 resultados para FOREST BIOMASS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Site-specific height-diameter models may be used to improve biomass estimates for forest inventories where only diameter at breast height (DBH) measurements are available. In this study, we fit height-diameter models for vegetation types of a tropical Atlantic forest using field measurements of height across plots along an altitudinal gradient. To fit height-diameter models, we sampled trees by DBH class and measured tree height within 13 one-hectare permanent plots established at four altitude classes. To select the best model we tested the performance of 11 height-diameter models using the Akaike Information Criterion (AIC). The Weibull and Chapman-Richards height-diameter models performed better than other models, and regional site-specific models performed better than the general model. In addition, there is a slight variation of height-diameter relationships across the altitudinal gradient and an extensive difference in the stature between the Atlantic and Amazon forests. The results showed the effect of altitude on tree height estimates and emphasize the need for altitude-specific models that produce more accurate results than a general model that encompasses all altitudes. To improve biomass estimation, the development of regional height-diameter models that estimate tree height using a subset of randomly sampled trees presents an approach to supplement surveys where only diameter has been measured.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three chemical species related to biomass burning, levoglucosan, potassium and water-soluble organic carbon (WSOC), were measured in aerosol samples collected in a rural area on the outskirts of the municipality of Ourinhos (Sao Paulo State, Brazil). This region is representative of the rural interior of the State, where the economy is based on agro-industrial production, and the most important crop is sugar cane. The manual harvesting process requires that the cane be first burned to remove excess foliage, leading to large emissions of particulate materials to the atmosphere. Most of the levoglucosan (68-89%) was present in small particles (<1.5 mu m), and its concentration in total aerosol ranged from 25 to 1186 ng m(-3). The highest values were found at night, when most of the biomass burning occurs. In contrast, WSOC showed no diurnal pattern, with an average concentration of 5.38 +/- 2.97 mu g m(-3) (n = 27). A significant linear correlation between levoglucosan and WSOC (r = 0.54; n = 26; p < 0.0001) confirmed that biomass burning was in fact an important source of WSOC in the study region. A moderate (but significant) linear correlation between levoglucosan and potassium concentrations (r = 0.62; n = 40; p < 0.0001) was indicative of the influence of other sources of potassium in the study region, such as soil resuspension and fertilizers. When only the fine particles (<1.5 pm; typical of biomass burning) were considered, the linear coefficient increased to 0.91 (n = 9). In this case, the average levoglucosan/K+ ratio was 0.24, which may be typical of biomass burning in the study region. This ratio is about 5 times lower than that previously found for Amazon aerosol collected during the day, when flaming combustion prevails. This suggests that the levoglucosan/K+ ratio may be especially helpful for characterization of the type of vegetation burned (such as crops or forest), when biomass-burning is the dominant source of potassium. The relatively high concentrations of WSOC (and inorganic ions) suggest an important influence on the formation of cloud condensation nuclei, which is likely to affect cloud formation and precipitation patterns. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Araucaria angustifolia, commonly named Araucaria, is a Brazilian native species that is intensively exploited due to its timber quality. Therefore, Araucaria is on the list of species threatened by extinction. Despite the importance of soil for forest production, little is known about the soil properties of the highly fragmented Araucaria forests. This study was designed to investigate the use of chemical and biological properties as indicators of conservation and anthropogenic disturbance of Araucaria forests in different sampling periods. The research was carried out in two State parks of São Paulo: Parque Estadual Turístico do Alto do Ribeira and Parque Estadual de Campos de Jordão. The biochemical properties carbon and nitrogen in microbial biomass (MB-C and MB-N), basal respiration (BR), the metabolic quotient (qCO2) and the following enzyme activities: β-glucosidase, urease, and fluorescein diacetate hydrolysis (FDA) were evaluated. The sampling period (dry or rainy season) influenced the results of mainly MB-C, MB-N, BR, and qCO2. The chemical and biochemical properties, except K content, were sensitive indicators of differences in the conservation and anthropogenic disturbance stages of Araucaria forests. Although these forests differ in biochemical and chemical properties, they are efficient in energy use and conservation, which is shown by their low qCO2, suggesting an advanced stage of succession.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA) is a long-term (20 years) research effort aimed at the understanding of the functioning of the Amazonian ecosystem. The strong biosphere-atmosphere interaction is a key component of the ecosystem functioning. Two aerosol components are the most visible: The natural biogenic emissions of particles and VOCs, and the biomass burning emissions. Two aerosol and trace gases monitoring stations were operated for 4 years in Manaus and Porto Velho, two very distinct sites, with different land use change. Manaus is a very clean and pristine site and Porto Velho is representative of heavy land use change in Amazonia. Aerosol composition, optical properties, size distribution, vertical profiling and optical depth were measured from 2008 to 2012. Aerosol radiative forcing was calculated over large areas. It was observed that the natural biogenic aerosol has significant absorption properties. Organic aerosol dominates the aerosol mass with 80 to 95%. Light scattering and light absorption shows an increase by factor of 10 from Manaus to Porto Velho. Very few new particle formation events were observed. Strong links between aerosols and VOC emissions were observed. Aerosol radiative forcing in Rondonia shows a high -15 watts/m² during the dry season of 2010, showing the large impacts of aerosol loading in the Amazonian ecosystem. The increase in diffuse radiation changes the forest carbon uptake by 20 to 35%, a large increase in this important ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric CO2 concentration ([CO2]) has increased over the last 250 years, mainly due to human activities. Of total anthropogenic emissions, almost 31% has been sequestered by the terrestrial biosphere. A considerable contribution to this sink comes from temperate and boreal forest ecosystems of the northern hemisphere, which contain a large amount of carbon (C) stored as biomass and soil organic matter. Several potential drivers for this forest C sequestration have been proposed, including increasing atmospheric [CO2], temperature, nitrogen (N) deposition and changes in management practices. However, it is not known which of these drivers are most important. The overall aim of this thesis project was to develop a simple ecosystem model which explicitly incorporates our best understanding of the mechanisms by which these drivers affect forest C storage, and to use this model to investigate the sensitivity of the forest ecosystem to these drivers. I firstly developed a version of the Generic Decomposition and Yield (G’DAY) model to explicitly investigate the mechanisms leading to forest C sequestration following N deposition. Specifically, I modified the G’DAY model to include advances in understanding of C allocation, canopy N uptake, and leaf trait relationships. I also incorporated a simple forest management practice subroutine. Secondly, I investigated the effect of CO2 fertilization on forest productivity with relation to the soil N availability feedback. I modified the model to allow it to simulate short-term responses of deciduous forests to environmental drivers, and applied it to data from a large-scale forest Free-Air CO2 Enrichment (FACE) experiment. Finally, I used the model to investigate the combined effects of recent observed changes in atmospheric [CO2], N deposition, and climate on a European forest stand. The model developed in my thesis project was an effective tool for analysis of effects of environmental drivers on forest ecosystem C storage. Key results from model simulations include: (i) N availability has a major role in forest ecosystem C sequestration; (ii) atmospheric N deposition is an important driver of N availability on short and long time-scales; (iii) rising temperature increases C storage by enhancing soil N availability and (iv) increasing [CO2] significantly affects forest growth and C storage only when N availability is not limiting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Successful conservation of tropical montane forest, one of the most threatened ecosystems on earth, requires detailed knowledge of its biogeochemistry. Of particular interest is the response of the biogeochemical element cycles to external influences such as element deposition or climate change. Therefore the overall objective of my study was to contribute to improved understanding of role and functioning of the Andean tropical montane forest. In detail, my objectives were to determine (1) the role of long-range transported aerosols and their transport mechanisms, and (2) the role of short-term extreme climatic events for the element budget of Andean tropical forest. In a whole-catchment approach including three 8-13 ha microcatchments under tropical montane forest on the east-exposed slope of the eastern cordillera in the south Ecuadorian Andes at 1850-2200 m above sea level I monitored at least in weekly resolution the concentrations and fluxes of Ca, Mg, Na, K, NO3-N, NH4-N, DON, P, S, TOC, Mn, and Al in bulk deposition, throughfall, litter leachate, soil solution at the 0.15 and 0.3 m depths, and runoff between May 1998 and April 2003. I also used meteorological data from my study area collected by cooperating researchers and the Brazilian meteorological service (INPE), as well as remote sensing products of the North American and European space agencies NASA and ESA. My results show that (1) there was a strong interannual variation in deposition of Ca [4.4-29 kg ha-1 a-1], Mg [1.6-12], and K [9.8-30]) between 1998 and 2003. High deposition changed the Ca and Mg budgets of the catchments from loss to retention, suggesting that the additionally available Ca and Mg was used by the ecosystem. Increased base metal deposition was related to dust outbursts of the Sahara and an Amazonian precipitation pattern with trans-regional dry spells allowing for dust transport to the Andes. The increased base metal deposition coincided with a strong La Niña event in 1999/2000. There were also significantly elevated H+, N, and Mn depositions during the annual biomass burning period in the Amazon basin. Elevated H+ deposition during the biomass burning period caused elevated base metal loss from the canopy and the organic horizon and deteriorated already low base metal supply of the vegetation. Nitrogen was only retained during biomass burning but not during non-fire conditions when deposition was much smaller. Therefore biomass burning-related aerosol emissions in Amazonia seem large enough to substantially increase element deposition at the western rim of Amazonia. Particularly the related increase of acid deposition impoverishes already base-metal scarce ecosystems. As biomass burning is most intense during El Niño situations, a shortened ENSO cycle because of global warming likely enhances the acid deposition at my study forest. (2) Storm events causing near-surface water flow through C- and nutrient-rich topsoil during rainstorms were the major export pathway for C, N, Al, and Mn (contributing >50% to the total export of these elements). Near-surface flow also accounted for one third of total base metal export. This demonstrates that storm-event related near-surface flow markedly affects the cycling of many nutrients in steep tropical montane forests. Changes in the rainfall regime possibly associated with global climate change will therefore also change element export from the study forest. Element budgets of Andean tropical montane rain forest proved to be markedly affected by long-range transport of Saharan dust, biomass burning-related aerosols, or strong rainfalls during storm events. Thus, increased acid and nutrient deposition and the global climate change probably drive the tropical montane forest to another state with unknown consequences for its functions and biological diversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric nitrogen (N) and phosphorus (P) depositions are expected to increase in the tropicsrnas a consequence of increasing human activities in the next decades. Furthermore, a possiblernshortened El Niño Southern Oscillation cycle might come along with more frequent calcium (Ca)rndepositions on the eastern slope of the Ecuadorian Andes originating from Saharan dust. It isrncrucial to understand the response of the old-growth montane forest in Ecuador to increasedrnnutrient deposition to predict the further development of this megadiverse ecosystem.rnI studied experimental additions of N, P, N+P and Ca to the forest and an untreatedrncontrol, all in a fourfold replicated randomized block design. These experiments were conductedrnin the framework of a collaborative research effort, the NUtrient Manipulation EXperimentrn(NUMEX). I collected litter leachate, mineral soil solution (0.15 and 0.30 m depths), throughfallrnand fine litterfall samples and determined N, P and Ca concentrations and fluxes. This approachrnalso allowed me to assess whether N, P and/or Ca are limiting nutrients for forest growth.rnFurthermore, I evaluated the response of fine root biomass, leaf area index, leaf area and specificrnleaf area, tree diameter growth and basal area increment contributed from a cooperating group inrnthe Ca applied and control treatments.rnDuring the observation period of 16 months after the first fertilizer application, less thanrn10, 1 and 5% of the applied N, P and Ca, respectively, leached below the organic layer whichrncontained almost all roots but no significant leaching losses occurred to the deeper mineral soil.rnDeposited N, P and Ca from the atmosphere in dry and wet form were, on balance, retained in therncanopy in the control treatment. Retention of N, P and Ca in the canopy in their respectiverntreatments was reduced resulting in higher concentrations and fluxes of N, P and Ca inrnthroughfall and litterfall. Up to 2.5% of the applied N and 2% of the applied P and Ca werernrecycled to the soil with throughfall. Fluxes of N, P and Ca in throughfall+litterfall were higher inrnthe fertilized treatments than in the control; up to 20, 5 and 25% of the applied N, P and Ca,rnrespectively, were recycled to the soil with throughfall+litterfall.rnIn the Ca-applied plots, fine root biomass decreased significantly. Also the leaf area of thernfour most common tree species tended to decrease and the specific leaf area increasedrnsignificantly in Graffenrieda emarginata Triana, the most common tree species in the study area.rnThese changes are known plant responses to reduced nutrient stress. Reduced aluminium (Al)rntoxicity as an explanation of the Ca effect was unlikely, because of almost complete organocomplexationrnof Al and molar Ca:Al concentration ratios in solution above the toxicity threshold.rnThe results suggest that N, P and Ca co-limit the forest ecosystem functioning in thernnorthern Andean montane forests in line with recent assumptions in which different ecosystemrncompartments and even different phenological stages may show different nutrient limitationsrn(Kaspari et al. 2008). I conclude that (1) the expected elevated N and P deposition will bernretained in the ecosystem, at least in the short term and hence, quality of river water will not bernendangered and (2) increased Ca input will reduce nutrient stress of the forest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forest fires play a key role in the global carbon cycle and thus, can affect regional and global climate. Although fires in extended areas of Russian boreal forests have a considerable influence on atmospheric greenhouse gas and soot concentrations, estimates of their impact on climate are hampered by a lack of data on the history of forest fires. Especially regions with strong continental climate are of high importance due to an intensified development of wildfires. In this study we reconstruct the fire history of Southern Siberia during the past 750 years using ice-core based nitrate, potassium, and charcoal concentration records from Belukha glacier in the continental Siberian Altai. A period of exceptionally high forest-fire activity was observed between AD 1600 and 1680, following an extremely dry period AD 1540-1600. Ice-core pollen data suggest distinct forest diebacks and the expansion of steppe in response to dry climatic conditions. Coherence with a paleoenvironmental record from the 200 km distant Siberian lake Teletskoye shows that the vegetational shift AD 1540-1680, the increase in fire activity AD 1600-1680, and the subsequent recovery of forests AD 1700 were of regional significance. Dead biomass accumulation in response to drought and high temperatures around AD 1600 probably triggered maximum forest-fire activity AD 1600-1680. The extreme dry period in the 16th century was also observed at other sites in Central Asia and is possibly associated with a persistent positive mode of the Pacific Decadal Oscillation (PDO). No significant increase in biomass burning occurred in the Altai region during the last 300 years, despite strongly increasing temperatures and human activities. Our results imply that precipitation changes controlled fire-regime and vegetation shifts in the Altai region during the past 750 years. We conclude that high sensitivity of ecosystems to occasional decadal-scale drought events may trigger unprecedented environmental reorganizations under global-warming conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Response of plant biodiversity to increased availability of nitrogen (N) has been investigated in temperate and boreal forests, which are typically N-limited, but little is known in tropical forests. We examined the effects of artificial N additions on plant diversity (species richness, density and cover) of the understory layer in an N saturated old-growth tropical forest in southern China to test the following hypothesis: N additions decrease plant diversity in N saturated tropical forests primarily from N-mediated changes in soil properties. Experimental additions of N were administered at the following levels from July 2003 to July 2008: no addition (Control); 50 kg N ha−1 yr−1 (Low-N); 100 kg N ha−1 yr−1 (Medium-N), and 150 kg N ha−1 yr−1 (High-N). Results showed that no understory species exhibited positive growth response to any level of N addition during the study period. Although low-to-medium levels of N addition (≤100 kg N ha−1 yr−1) generally did not alter plant diversity through time, high levels of N addition significantly reduced species diversity. This decrease was most closely related to declines within tree seedling and fern functional groups, as well as to significant increases in soil acidity and Al mobility, and decreases in Ca availability and fine-root biomass. This mechanism for loss of biodiversity provides sharp contrast to competition-based mechanisms suggested in studies of understory communities in other forests. Our results suggest that high-N additions can decrease plant diversity in tropical forests, but that this response may vary with rate of N addition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assessment of soil disturbance on the Custer National Forest was conducted during two summers to determine if the U.S. Forest Service Forest Soil Disturbance Monitoring Protocol (FSDMP) was able to distinguish post-harvest soil conditions in a chronological sequence of sites harvested using different ground-based logging systems. Results from the first year of sampling suggested that the FSDMP point sampling method may not be sensitive enough to measure post-harvest disturbance in stands with low levels of disturbance. Therefore, a revised random transect method was used during the second sampling season to determine the actual extent of soil disturbance in these cutting units. Using combined data collected from both summers I detected statistically significant differences (p < 0.05) in fine fraction bulk density measurements between FSDMP disturbance classes across all sites. Disturbance class 3 (most severe) had the highest reported bulk density, which suggest that the FSDMP visual class estimates are defined adequately allowing for correlations to be made between visual disturbance and actual soil physical characteristics. Forest site productivity can be defined by its ability to retain carbon and convert it to above- and belowground biomass. However, forest management activities that alter basic site characteristics have the potential to alter productivity. Soil compaction is one critical management impact that is important to understand; compaction has been shown to impede the root growth potential of plants, reduce water infiltration rates increasing erosion potential, and alter plant available water and nutrients, depending on soil texture. A new method to assess ground cover, erosion, and other soil disturbances was recently published by the U.S. Forest Service, as the Forest Soil Disturbance Protocol (FSDMP). The FSDMP allows soil scientists to visually assign a disturbance class estimate (0 – none, 1, 2, 3 – severe) from field measures of consistently defined soil disturbance indicators (erosion, fire, rutting, compaction, and platy/massive/puddled structure) in small circular (15 cm) plots to compare soil quality properties pre- and post- harvest condition. Using this protocol we were able to determine that ground-based timber harvesting activities occurring on the Custer National Forest are not reaching the 15% maximum threshold for detrimental soil disturbance outlined by the Region 1 Soil Quality Standards.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Green-tree retention under the conceptual framework of ecological forestry has the potential to provide both biomass feedstock for industry and maintain quality wildlife habitat. I examined the effects of retained canopy trees as biological legacies (“legacy trees”) in aspen (Populus spp.) forests on above-ground live woody biomass, understory plant floristic quality, and bird diversity. Additionally, I evaluated habitat quality for a high conservation priority species, the Golden-winged Warbler (Vermivora chrysoptera). I selected 27 aspen-dominated forest stands in northern Wisconsin with nine stands in each of three legacy tree retention treatments (conifer retention, hardwood retention, and clearcuts or no retention) across a chronosequence (4-36 years post-harvest). Conifer retention stands had greater legacy tree and all tree species biomass but lower regenerating tree biomass than clearcuts. Coniferous but not hardwood legacy trees appeared to suppress regenerating tree biomass. I evaluated the floristic quality of the understory plant assemblage by estimating the mean coefficient of conservatism (C). Mean C was lower in young stands than in middle-age or old stands; there was a marginally significant (p=0.058) interaction effect between legacy tree retention treatment and stand age. Late-seral plant species were positively associated with stand age and legacy tree diameter or age revealing an important relationship between legacy tree retention and stand development. Bird species richness was greatest in stands with hardwood retention particularly early in stand development. Six conservation priority bird species were indicators of legacy tree retention or clearcuts. Retention of legacy trees in aspen stands provided higher quality nest habitat for the Golden-winged Warbler than clearcuts based on high pairing success and nesting activity. Retention of hardwoods, particularly northern red oak (Quercus rubra), yielded the most consistent positive effects in this study with the highest bird species richness and the highest quality habitat for the Golden-winged Warbler. This treatment maintained stand biomass comparable to clearcuts and did not suppress regenerating tree biomass. In conclusion, legacy tree retention can enhance even-aged management techniques to produce a win-win scenario for the conservation of declining bird species and late-seral understory plants and for production of woody biomass feedstock from naturally regenerating aspen forests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report is a study of the development and implementation of a biomass fuel briquette and improved stove project in the highlands of Ethiopia. The primary goal of the project was to determine if the introduction of an improved stove would affect the acceptability of fuel briquettes. The secondary goal was to establish briquette and improved stove manufacturing associations in Dinsho and Rira towns. Two problems encountered during the project were cultural differences in material valuation, and difficulty working with local administrative frameworks and multi-organization communication difficulties. Both briquettes and improved stoves received positive feedback from respondents. Survey data indicated that a price of 0.75 Ethiopian birr per briquette would make them a competitive fuel source against fuelwood. Recommendations for feedstock sourcing and supply, capital investment, labor reduction, estimating cost effectiveness, appropriate technology design, development work setbacks, and valuation paradigms for fuel briquette, improved stove, and development work projects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tropical montane forests of the E Andean cordillera in Ecuador receive episodic Sahara-dust inputs particularly increasing Ca deposition. We added CaCl2 to isolate the effect of Ca deposition by Sahara dust to tropical montane forest from the simultaneously occurring pH effect. We examined components of the Ca cycle at four control plots and four plots with added Ca (2 × 5 kg ha–1 Ca annually as CaCl2) in a random arrangement. Between August 2007 and December 2009 (four applications of Ca), we determined Ca concentrations and fluxes in litter leachate, mineral soil solution (0.15 and 0.30 m depths), throughfall, and fine litterfall and Al concentrations and speciation in soil solutions. After 1 y of Ca addition, we assessed fine-root biomass, leaf area, and tree growth. Only < 3% of the applied Ca leached below the acid organic layer (pH 3.5–4.8). The added CaCl2 did not change electrical conductivity in the root zone after 2 y. In the second year of fertilization, Ca retention in the canopy of the Ca treatment tended to decrease relative to the control. After 2 y, 21% of the applied Ca was recycled to soil with throughfall and litterfall. One year after the first Ca addition, fine-root biomass had decreased significantly. Decreasing fine-root biomass might be attributed to a direct or an indirect beneficial effect of Ca on the soil decomposer community. Because of almost complete association of Al with dissolved organic matter and high free Ca2+ : Al3+ activity ratios in solution of all plots, Al toxicity was unlikely. We conclude that the added Ca was retained in the system and had beneficial effects on some plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nutrient inputs into ecosystems of the tropical mountain rainforest region are projected to further increase in the next decades. To investigate whether important ecosystem services such as nutrient cycling and matter turnover in native forests and pasture ecosystems show different patterns of response, two nutrient addition experiments have been established: NUMEX in the forest and FERPAST at the pasture. Both ecosystems already responded 1.5 years after the start of nutrient application (N, P, NP, Ca). Interestingly, most nutrients remained in the respective systems. While the pasture grass was co-limited by N and P, most tree species responded to P addition. Soil microbial biomass in the forest litter layer increased after NP fertilization pointing to nutrient co-limitation. In pasture soils, microorganisms were neither limited by N nor P. The results support the hypothesis that multiple and temporally variable nutrient limitations can coexist in tropical ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to explore potential causes and mechanisms for the sequence and temporal pattern of tree taxa, specifically for the shift from shrub-tundra to birch–juniper woodland during and after the transition from the Oldest Dryas to the Bølling–Allerød in the region surrounding the lake Gerzensee in southern Central Europe. We tested the influence of climate, forest dynamics, community dynamics compared to other causes for delays. For this aim temperature reconstructed from a δ18O-record was used as input driving the multi-species forest-landscape model TreeMig. In a stepwise scenario analysis, population dynamics along with pollen production and transport were simulated and compared with pollen-influx data, according to scenarios of different δ18O/temperature sensitivities, different precipitation levels, with/without inter-specific competition, and with/without prescribed arrival of species. In the best-fitting scenarios, the effects on competitive relationships, pollen production, spatial forest structure, albedo, and surface roughness were examined in more detail. The appearance of most taxa in the data could only be explained by the coldest temperature scenario with a sensitivity of 0.3‰/°C, corresponding to an anomaly of − 15 °C. Once the taxa were present, their temporal pattern was shaped by competition. The later arrival of Pinus could not be explained even by the coldest temperatures, and its timing had to be prescribed by first observations in the pollen record. After the arrival into the simulation area, the expansion of Pinus was further influenced by competitors and minor climate oscillations. The rapid change in the simulated species composition went along with a drastic change in forest structure, leaf area, albedo, and surface roughness. Pollen increased only shortly after biomass. Based on our simulations, two alternative potential scenarios for the pollen pattern can be given: either very cold climate suppressed most species in the Oldest Dryas, or they were delayed by soil formation or migration. One taxon, Pinus, was delayed by migration and then additionally hindered by competition. Community dynamics affected the pattern in two ways: potentially by facilitation, i.e. by nitrogen-fixing pioneer species at the onset, whereas the later pattern was clearly shaped by competition. The simulated structural changes illustrate how vegetation on a larger scale could feed back to the climate system. For a better understanding, a more integrated simulation approach covering also the immigration from refugia would be necessary, for this combines climate-driven population dynamics, migration, individual pollen production and transport, soil dynamics, and physiology of individual pollen production.