970 resultados para FALCIPARUM CIRCUMSPOROZOITE PROTEIN


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Serological tests to detect antibodies specific to Plasmodium vivax could be a valuable tool for epidemiological studies, for screening blood donors in areas where the malaria is not endemic and for diagnosis of infected individuals. Because P. vivax cannot be easily obtained in vitro, ELISA assays using total or semi-purified antigens are rarely used. Based on this limitation, we tested whether recombinant proteins representing the 19 kDa C-terminal region of the merozoite surface protein-1 of P. vivax (MSP119) could be useful for serological detection of malaria infection. Methods Three purified recombinant proteins produced in Escherichia coli (GST-MSP119, His6-MSP119 and His6-MSP119-PADRE) and one in Pichia pastoris (yMSP119-PADRE) were compared for their ability to bind to IgG antibodies of individuals with patent P. vivax infection. The method was tested with 200 serum samples collected from individuals living in the north of Brazil in areas endemic for malaria, 53 serum samples from individuals exposed to Plasmodium falciparum infection and 177 serum samples from individuals never exposed to malaria. Results Overall, the sensitivity of the ELISA assessed with sera from naturally infected individuals was 95%. The proportion of serum samples that reacted with recombinant proteins GST-MSP119, His6-MSP119, His6-MSP119-PADRE and yMSP119-PADRE was 90%, 93.5%, 93.5% and 93.5%, respectively. The specificity values of the ELISA determined with sera from healthy individuals and from individuals with other infectious diseases were 98.3% (GST-MSP119), 97.7% (His6-MSP119 and His6-MSP119-PADRE) or 100% (yMSP119-PADRE). Conclusions Our study demonstrated that for the Brazilian population, an ELISA using a recombinant protein of the MSP119 can be used as the basis for the development of a valuable serological assay for the detection of P. vivax malaria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Isoprenoids are the most diverse and abundant group of natural products. In Plasmodium falciparum, isoprenoid synthesis proceeds through the methyl erythritol diphosphate pathway and the products are further metabolized by farnesyl diphosphate synthase (FPPS), turning this enzyme into a key branch point of the isoprenoid synthesis. Changes in FPPS activity could alter the flux of isoprenoid compounds downstream of FPPS and, hence, play a central role in the regulation of a number of essential functions in Plasmodium parasites. Methods The isolation and cloning of gene PF3D7_18400 was done by amplification from cDNA from mixed stage parasites of P. falciparum. After sequencing, the fragment was subcloned in pGEX2T for recombinant protein expression. To verify if the PF3D7_1128400 gene encodes a functional rPfFPPS protein, its catalytic activity was assessed using the substrate [4-14C] isopentenyl diphosphate and three different allylic substrates: dimethylallyl diphosphate, geranyl diphosphate or farnesyl diphosphate. The reaction products were identified by thin layer chromatography and reverse phase high-performance liquid chromatography. To confirm the product spectrum formed of rPfFPPS, isoprenic compounds were also identified by mass spectrometry. Apparent kinetic constants KM and Vmax for each substrate were determined by Michaelis–Menten; also, inhibition assays were performed using risedronate. Results The expressed protein of P. falciparum FPPS (rPfFPPS) catalyzes the synthesis of farnesyl diphosphate, as well as geranylgeranyl diphosphate, being therefore a bifunctional FPPS/geranylgeranyl diphosphate synthase (GGPPS) enzyme. The apparent KM values for the substrates dimethylallyl diphosphate, geranyl diphosphate and farnesyl diphosphate were, respectively, 68 ± 5 μM, 7.8 ± 1.3 μM and 2.06 ± 0.4 μM. The protein is expressed constitutively in all intra-erythrocytic stages of P. falciparum, demonstrated by using transgenic parasites with a haemagglutinin-tagged version of FPPS. Also, the present data demonstrate that the recombinant protein is inhibited by risedronate. Conclusions The rPfFPPS is a bifunctional FPPS/GGPPS enzyme and the structure of products FOH and GGOH were confirmed mass spectrometry. Plasmodial FPPS represents a potential target for the rational design of chemotherapeutic agents to treat malaria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural peculiarities of a protein are related to its biological function. In the fatty acid elongation cycle, one small carrier protein shuttles and delivers the acyl intermediates from one enzyme to the other. The carrier has to recognize several enzymatic counterparts, specifically interact with each of them, and finally transiently deliver the carried substrate to the active site. Carry out such a complex game requires the players to be flexible and efficiently adapt their structure to the interacting protein or substrate. In a drug discovery effort, the structure-function relationships of a target system should be taken into account to optimistically interfere with its biological function. In this doctoral work, the essential role of structural plasticity in key steps of fatty acid biosynthesis in Plasmodium falciparum is investigated by means of molecular simulations. The key steps considered include the delivery of acyl substrates and the structural rearrangements of catalytic pockets upon ligand binding. The ground-level bases for carrier/enzyme recognition and interaction are also put forward. The structural features of the target have driven the selection of proper drug discovery tools, which captured the dynamics of biological processes and could allow the rational design of novel inhibitors. The model may be perspectively used for the identification of novel pathway-based antimalarial compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Im Rahmen dieser Arbeit wurden biologische Funktionen einer Proteinkinase des Erregers der Malaria tropica, genauer der „Plasmodium falciparum calcium dependent protein kinase 1“ (PfCDPK1), in parasitären Blutstadien untersucht.rnUm Einblicke in die Funktion der Kinase, die sie in den extrazellulären Kompartimenten des Parasiten übernimmt, zu gewinnen, wurden sechs Proteine untersucht, die dasselbe Translokationsignal wie PfCDPK1 besitzen. Es konnte gezeigt werden, dass fünf der untersuchten Proteine mit der PfCDPK1 im Bereich der parasitophoren Vakuole sowie des tubovesikulären Systems co-lokalisiert sind. Deletionsmutanten, denen das Translokationssignal fehlte, sowie ein Peptid, das lediglich aus diesem bestand, bestätigten, dass die Translokation in die extrazellulären Kompartimente von keinen weiteren Faktoren, außer dem Signalmotiv abhängt. Mit PfCAP und PfRKIP konnten zwei Regulatoren der PfCDPK1 identifiziert werden. PfARM, Pfrab_5b sowie PfGAP45 sind Substrate der PfCDPK1. Mit Hilfe von massenspektrometrischen Messungen wurde der Phosphorylierungsstatus der untersuchten Proteine durch die PfCDPK1 sowie der Autophosphorylierungsstatus der Kinase bestimmt, um Rückschlüsse auf regulatorische Prozesse ziehen zu können.rnDie Phosphorylierung von PfGAP45 durch die PfCDPK1 steht vermutlich mit dem Invasionsprozess des Parasiten in direktem Zusammenhang, da gezeigt wurde, dass eine Hemmung der Kinase mit PP1 einen 90%igen Rückgang an neu infizierten Erythrozyten zur Folge hatte.rnrn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A vestigial, nonphotosynthetic plastid has been identified recently in protozoan parasites of the phylum Apicomplexa. The apicomplexan plastid, or “apicoplast,” is indispensable, but the complete sequence of both the Plasmodium falciparum and Toxoplasma gondii apicoplast genomes has offered no clue as to what essential metabolic function(s) this organelle might perform in parasites. To investigate possible functions of the apicoplast, we sought to identify nuclear-encoded genes whose products are targeted to the apicoplast in Plasmodium and Toxoplasma. We describe here nuclear genes encoding ribosomal proteins S9 and L28 and the fatty acid biosynthetic enzymes acyl carrier protein (ACP), β-ketoacyl-ACP synthase III (FabH), and β-hydroxyacyl-ACP dehydratase (FabZ). These genes show high similarity to plastid homologues, and immunolocalization of S9 and ACP verifies that the proteins accumulate in the plastid. All the putatively apicoplast-targeted proteins bear N-terminal presequences consistent with plastid targeting, and the ACP presequence is shown to be sufficient to target a recombinant green fluorescent protein reporter to the apicoplast in transgenic T. gondii. Localization of ACP, and very probably FabH and FabZ, in the apicoplast implicates fatty acid biosynthesis as a likely function of the apicoplast. Moreover, inhibition of P. falciparum growth by thiolactomycin, an inhibitor of FabH, indicates a vital role for apicoplast fatty acid biosynthesis. Because the fatty acid biosynthesis genes identified here are of a plastid/bacterial type, and distinct from those of the equivalent pathway in animals, fatty acid biosynthesis is potentially an excellent target for therapeutics directed against malaria, toxoplasmosis, and other apicomplexan-mediated diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malaria during the first pregnancy causes a high rate of fetal and neonatal death. The decreasing susceptibility during subsequent pregnancies correlates with acquisition of antibodies that block binding of infected red cells to chondroitin sulfate A (CSA), a receptor for parasites in the placenta. Here we identify a domain within a particular Plasmodium falciparum erythrocyte membrane protein 1 that binds CSA. We cloned a var gene expressed in CSA-binding parasitized red blood cells (PRBCs). The gene had eight receptor-like domains, each of which was expressed on the surface of Chinese hamster ovary cells and was tested for CSA binding. CSA linked to biotin used as a probe demonstrated that two Duffy-binding-like (DBL) domains (DBL3 and DBL7) bound CSA. DBL7, but not DBL3, also bound chondroitin sulfate C (CSC) linked to biotin, a negatively charged sugar that does not support PRBC adhesion. Furthermore, CSA, but not CSC, blocked the interaction with DBL3; both CSA and CSC blocked binding to DBL7. Thus, only the DBL3 domain displays the same binding specificity as PRBCs. Because protective antibodies present after pregnancy block binding to CSA of parasites from different parts of the world, DBL-3, although variant, may induce cross-reactive immunity that will protect pregnant women and their fetuses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Binding of infected erythrocytes to brain venules is a central pathogenic event in the lethal malaria disease complication, cerebral malaria. The only parasite adhesion trait linked to cerebral sequestration is binding to intercellular adhesion molecule-1 (ICAM-1). In this report, we show that Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) binds ICAM-1. We have cloned and expressed PfEMP1 recombinant proteins from the A4tres parasite. Using heterologous expression in mammalian cells, the minimal ICAM-1 binding domain was a complex domain consisting of the second Duffy binding-like (DBL) domain and the C2 domain. Constructs that contained either domain alone did not bind ICAM-1. Based on phylogenetic criteria, there are five distinct PfEMP1 DBL types designated α, β, γ, δ, and ɛ. The DBL domain from the A4tres that binds ICAM-1 is DBLβ type. A PfEMP1 cloned from a distinct ICAM-1 binding variant, the A4 parasite, contains a DBLβ domain and a C2 domain in tandem arrangement similar to the A4tres PfEMP1. Anti-PfEMP1 antisera implicate the DBLβ domain from A4var PfEMP1 in ICAM-1 adhesion. The identification of a P. falciparum ICAM-1 binding domain may clarify mechanisms responsible for the pathogenesis of cerebral malaria and lead to interventions or vaccines that reduce malarial disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FULL-malaria is a database for a full-length-enriched cDNA library from the human malaria parasite Plasmodium falciparum (http://133.11.149.55/). Because of its medical importance, this organism is the first target for genome sequencing of a eukaryotic pathogen; the sequences of two of its 14 chromosomes have already been determined. However, for the full exploitation of this rapidly accumulating information, correct identification of the genes and study of their expression are essential. Using the oligo-capping method, we have produced a full-length-enriched cDNA library from erythrocytic stage parasites and performed one-pass reading. The database consists of nucleotide sequences of 2490 random clones that include 390 (16%) known malaria genes according to BLASTN analysis of the nr-nt database in GenBank; these represent 98 genes, and the clones for 48 of these genes contain the complete protein-coding sequence (49%). On the other hand, comparisons with the complete chromosome 2 sequence revealed that 35 of 210 predicted genes are expressed, and in addition led to detection of three new gene candidates that were not previously known. In total, 19 of these 38 clones (50%) were full-length. From these obser­vations, it is expected that the database contains ∼1000 genes, including 500 full-length clones. It should be an invaluable resource for the development of vaccines and novel drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Plasmodium falciparum Genome Database (http://PlasmoDB.org) integrates sequence information, automated analyses and annotation data emerging from the P.falciparum genome sequencing consortium. To date, raw sequence coverage is available for >90% of the genome, and two chromosomes have been finished and annotated. Data in PlasmoDB are organized by chromosome (1–14), and can be accessed using a variety of tools for graphical and text-based browsing or downloaded in various file formats. The GUS (Genomics Unified Schema) implementation of PlasmoDB provides a multi-species genomic relational database, incorporating data from human and mouse, as well as P.falciparum. The relational schema uses a highly structured format to accommodate diverse data sets related to genomic sequence and gene expression. Tools have been designed to facilitate complex biological queries, including many that are specific to Plasmodium parasites and malaria as a disease. Additional projects seek to integrate genomic information with the rich data sets now becoming available for RNA transcription, protein expression, metabolic pathways, genetic and physical mapping, antigenic and population diversity, and phylogenetic relationships with other apicomplexan parasites. The overall goal of PlasmoDB is to facilitate Internet- and CD-ROM-based access to both finished and unfinished sequence information by the global malaria research community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasmodium falciparum parasites evade the host immune system by clonal expression of the variant antigen, P. falciparum erythrocyte membrane protein 1 (PfEMP1). Antibodies to PfEMP1 correlate with development of clinical immunity but are predominantly variant-specific. To overcome this major limitation for vaccine development, we set out to identify cross-reactive epitopes on the surface of parasitized erythrocytes (PEs). We prepared mAbs to the cysteine-rich interdomain region 1 (CIDR1) of PfEMP1 that is functionally conserved for binding to CD36. Two mAbs, targeting different regions of CIDR1, reacted with multiple P. falciparum strains expressing variant PfEMP1s. One of these mAbs, mAb 6A2-B1, recognized nine of 10 strains tested, failing to react with only one strain that does not bind CD36. Flow cytometry with Chinese hamster ovary cells expressing variant CIDR1s demonstrated that both mAbs recognized the CIDR1 of various CD36-binding PfEMP1s and are truly cross-reactive. The demonstration of cross-reactive epitopes on the PE surface provides further credence for development of effective vaccines against the variant antigen on the surface of P. falciparum-infected erythrocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasmodium falciparum is the major causative agent of malaria, a disease of worldwide importance. Resistance to current drugs such as chloroquine and mefloquine is spreading at an alarming rate, and our antimalarial armamentarium is almost depleted. The malarial parasite encodes two homologous aspartic proteases, plasmepsins I and II, which are essential components of its hemoglobin-degradation pathway and are novel targets for antimalarial drug development. We have determined the crystal structure of recombinant plasmepsin II complexed with pepstatin A. This represents the first reported crystal structure of a protein from P. falciparum. The crystals contain molecules in two different conformations, revealing a remarkable degree of interdomain flexibility of the enzyme. The structure was used to design a series of selective low molecular weight compounds that inhibit both plasmepsin II and the growth of P. falciparum in culture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exact role of the pfmdr1 gene in the emergence of drug resistance in the malarial parasite Plasmodium falciparum remains controversial. pfmdr1 is a member of the ATP binding cassette (ABC) superfamily of transporters that includes the mammalian P-glycoprotein family. We have introduced wild-type and mutant variants of the pfmdr1 gene in the yeast Saccharomyces cerevisiae and have analyzed the effect of pfmdr1 expression on cellular resistance to quinoline-containing antimalarial drugs. Yeast transformants expressing either wild-type or a mutant variant of mouse P-glycoprotein were also analyzed. Dose-response studies showed that expression of wild-type pfmdr1 causes cellular resistance to quinine, quinacrine, mefloquine, and halofantrine in yeast cells. Using quinacrine as substrate, we observed that increased resistance to this drug in pfmdr1 transformants was associated with decreased cellular accumulation and a concomitant increase in drug release from preloaded cells. The introduction of amino acid polymorphisms in TM11 of Pgh-1 (pfmdr1 product) associated with drug resistance in certain field isolates of P. falciparum abolished the capacity of this protein to confer drug resistance. Thus, these findings suggest that Pgh-1 may act as a drug transporter in a manner similar to mammalian P-glycoprotein and that sequence variants associated with drug-resistance pfmdr1 alleles behave as loss of function mutations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Open reading frames in the Plasmodium falciparum genome encode domains homologous to the adhesive domains of the P. falciparum EBA-175 erythrocyte-binding protein (eba-175 gene product) and those of the Plasmodium vivax and Plasmodium knowlesi Duffy antigen-binding proteins. These domains are referred to as Duffy binding-like (DBL), after the receptor that determines P. vivax invasion of Duffy blood group-positive human erythrocytes. Using oligonucleotide primers derived from short regions of conserved sequence, we have developed a reverse transcription-PCR method that amplifies sequences encoding the DBL domains of expressed genes. Products of these reverse transcription-PCR amplifications include sequences of single-copy genes (including eba-175) and variably transcribed genes that cross-hybridize to multiple regions of the genome. Restriction patterns of the multicopy genes show a high degree of polymorphism among different parasite lines, whereas single-copy genes are generally conserved. Characterization of the single-copy genes has identified a gene (ebl-1) that is related to eba-175 and is likely to be involved in erythrocyte invasion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several immunomodulatory factors are involved in malaria pathogenesis. Among them, heme has been shown to play a role in the pathophysiology of severe malaria in rodents, but its role in human severe malaria remains unclear. Circulating levels of total heme and its main scavenger, hemopexin, along with cytokine/chemokine levels and biological parameters, including hemoglobin and creatinine levels, as well as transaminase activities, were measured in the plasma of 237 Plasmodium falciparum-infected patients living in the state of Odisha, India, where malaria is endemic. All patients were categorized into well-defined groups of mild malaria, cerebral malaria (CM), or severe noncerebral malaria, which included acute renal failure (ARF) and hepatopathy. Our results show a significant increase in total plasma heme levels with malaria severity, especially for CM and malarial ARF. Spearman rank correlation and canonical correlation analyses have shown a correlation between total heme, hemopexin, interleukin-10, tumor necrosis factor alpha, gamma interferon-induced protein 10 (IP-10), and monocyte chemotactic protein 1 (MCP-1) levels. In addition, canonical correlations revealed that heme, along with IP-10, was associated with the CM pathophysiology, whereas both IP-10 and MCP-1 together with heme discriminated ARF. Altogether, our data indicate that heme, in association with cytokines and chemokines, is involved in the pathophysiology of both CM and ARF but through different mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) gene were examined to assess their associations with chloroquine resistance in clinical samples from Armopa (Papua) and Papua New Guinea. In Papua, two of the five pfcrt haplotypes found were new: SVIET from Armopa and CVIKT from an isolate in Timika. There was also a strong association (P < 0.0001) between the pfcrt 76T allele and chloroquine resistance in 50 samples. In Papua New Guinea, mutations in the pfcrt gene were observed in 15 isolates with chloroquine minimum inhibitory concentrations (MICs) of 16-64 pmol, while the remaining six isolates, which had a wild-type pfcrt gene at codon 76, had MICs of 2-8 pmol. These observations confirm that mutations at codon 76 in the pfcrt gene are present in both in vivo and in vitro cases of chloroquine resistance, and that detection of the pfcrt 76T allele could predict potential chloroquine treatment failures.