898 resultados para Extrusion dies
Resumo:
Response surface methodology was employed to optimize the production of a snack food from chickpea. The independent variables, process temperature (123-137-degrees-C) and feed moisture (13-27% d.s.b.) were selected at five levels (rotatable five level composite design: - square-root 2, -1, 0, 1, + square-root 2) in the extrusion of defatted chickpea flour. Response variables were expansion ratio, shear strength of the extrudate and sensory preference assessed by an untrained panel. Expansion ratio increased steadily with decrease in feed moisture similar to cereal extrusion. Regions of maxima were observed for sensory preference and shear strength, and these two product attributes were linearly related. The most acceptable chickpea snack was rated higher than a commercial corn snack.
Resumo:
STATEMENT OF PROBLEM: Despite careful procedures, master stone dies may be damaged during laboratory procedures. The dentist routinely adjusts castings because the marginal fit of casting is not as accurate as on the dies. PURPOSE: This study evaluated the technique of internal adjustment of castings with use of duplicated stone dies and a disclosing agent to improve marginal fit discrepancy. MATERIAL AND METHODS: Thirty-two nickel-chromium copings were fabricated and simulated standard clinical and laboratory procedures with 2 variables: tooth preparation convergence angles of 6 and 18 degrees, with or without internal relief. Master stone dies and their duplicates were selected for coping construction and internal adjustment, respectively. A specimen positioning device was coupled with a Toolmakers microscope to allow reproducibility of measurements. Each coping was evaluated at 8 locations of its marginal perimeter, before and after internal adjustment. RESULTS: Marginal fit discrepancy of copings were significantly reduced with an internal adjustment technique (mean > 52%) for all experimental groups. Tooth preparations with greater convergence and internally relieved castings recorded a better marginal fit. CONCLUSION: The casting internal adjustment technique with use of duplicated stone dies and a disclosing agent substantially reduced marginal fit discrepancy.
Resumo:
Optical microscopy and morphometric analysis were used in this study to evaluate, in vitro, the cleaning of the apical region in root canals with mild or moderate curvatures subjected to biomechanical preparation with a rotary system, as well as to assess the amount of extruded material to the periapical area. Lateral incisors (n = 32), 16 with curvature angles smaller or equal to 10° (GI) and 16 between 11° and 25° angles (GII) were submitted to Hero 642 rotary instrumentation with different surgical diameters: (A) 30.02 and (B) 45.02. Irrigation was performed at each change of instrument with 5 mL of ultrapure Milli-Q water and the extruded material through the apical foramen was collected. Root cross-sections were subjected to histological analysis by optical microscopy (×40) and the images were evaluated morphometrically using the Image Tool software. Quantification of the extruded material was performed by weighing after liquid evaporation. ANOVA showed no statistically significant differences (p>0.05) among the groups with respect to the procedures used to clean the apical region. Considering the amount of extruded material, the Tukey's HSD showed that canals with mild curvature prepared with the 45.02 surgical diameter showed significantly higher values (p<0.05) that those of the other groups, which were similar between themselves (p>0.05). In conclusion, the effect of cleaning the apical region did not differ in the groups, considering root curvature and the surgical diameter of instruments used for apical preparation. The amount of extruded material was greater in canals with mild curvature that were prepared with the 45.02 surgical instrument diameter.
Resumo:
Orthodontic extrusion with multidisciplinary treatment can provide predictable outcomes in selected situations, reducing the costs and the adaptation times of gingival tissues after implant integration. Forced orthodontic extrusion is strongly related to interactions of teeth with their supportive periodontal tissues. This article reports a case of orthodontic extrusion of the maxillary incisors for later implant rehabilitation in a patient with periodontal disease. Slow forces were applied for 14 months. After this time, the teeth were extracted, and the implants were placed on the same day. Also in the same session, the provisional crown was fabricated for restoration of the anterior maxillary interdental papillae loss and for gingival contouring. Clinical and radiographic examinations at the 6-year follow-up showed successful tooth replacement and an improved esthetic appearance achieved by this multidisciplinary treatment. The decision to perform orthodontic extrusion for implant placement in adult patients should be multidisciplinary. Copyright © 2013 by the American Association of Orthodontists.
Resumo:
The effects of the moisture content of the raw material, extrusion temperature and screw speed on flavor retention, sensory acceptability and structure of corn grits extrudates flavored with isovaleraldehyde, ethyl butyrate and butyric acid were investigated. Higher temperature resulted in more expanded extrudates with lower density and cutting force, while higher moisture content increased ethyl butyrate retention. The most acceptable extrudates were those obtained with low moisture content, under conditions of high extrusion temperature and high screw speed, or low screw speed and low extrusion temperature, whereas the aroma intensity closest to the ideal was observed under conditions of low extrusion temperature and low moisture content of the raw material. © 2013 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
To review the literature searching for a consensus for the choice of orthodontic extrusion as treatment for crown-root fracture. An electronic search was performed in the databases PubMed, Cochrane Central Register of Controlled Trials and Scopus and a manual search of the Journal Dental Traumatology. Forty articles were found in PubMed and 38 in Scopus and after removal of duplicate sample 51 contained articles. Of these, 48 were excluded for not having orthodontic treatment, no follow-up or follow-up less than 6 months, or not report the presence of crown-root fracture. In manual search in Dental Traumatology 20 articles were found, but none of them met the prerequisites established. So, three articles formed the basis of the study. The choice of how to treat orthodontic extrusion of crown-root fracture was effective and stable, without root and periodontal changes. Factors, such as root formation and presence of pulp vitality were decisive for determining the stages of treatment, however, there is no consensus based on scientific evidence about these protocols.
Resumo:
With the purpose of evaluating the behavior of different polymers employed as binders in small-diameter pellets for oral administration, we prepared formulations containing paracetamol and one of the following polymers: PVP, PEG 1500, hydroxypropylmethylcellulose and methylcellulose, and we evaluated their different binding properties. The pellets were obtained by the extrusion/spheronization process and were subsequently subjected to fluid bed drying. In order to assess drug delivery, the United States Pharmacopeia (USP) apparatus 3 (Bio-Dis) was employed, in conjunction with the method described by the same pharmacopeia for the dissolution of paracetamol tablets (apparatus 1). The pellets were also evaluated for granulometry, friability, true density and drug content. The results indicate that the different binders used are capable of affecting production in different ways, and some of the physicochemical characteristics of the pellets, as well as the dissolution test, revealed that the formulations acted like immediate-release products. The pellets obtained presented favorable release characteristics for orally disintegrating tablets. USP apparatus 3 seems to be more adequate for discriminating among formulations than the basket method.
Resumo:
We developed cationic liposomes containing DNA through a conventional process involving steps of (i) preformation of liposomes, (ii) extrusion, (iii) drying and rehydration and (iv) DNA complexation. Owing to its high prophylactic potentiality against tuberculosis, which had already been demonstrated in preclinical assays, we introduced modifications into the conventional process towards getting a simpler and more economical process for further scale-up. Elimination of the extrusion step, increasing the lipid concentration (from 16 to 64 mM) of the preformed liposomes and using good manufacturing practice bulk lipids (96-98% purity) instead of analytical grade purity lipids (99.9-100%) were the modifications studied. The differences in the physico-chemical properties, such as average diameter, zeta potential, melting point and morphology of the liposomes prepared through the modified process, were not as significant for the biological properties, such as DNA loading on the cationic liposomes, and effective immune response in mice after immunisation as the control liposomes prepared through the conventional process. Beneficially, the modified process increased productivity by 22% and reduced the cost of raw material by 75%.
Resumo:
Gelatin-based films containing both Yucca schidigera extract and low concentrations of glycerol (0.25-8.75 g per 100 g protein) were produced by extrusion (EF) and characterized in relation to their mechanical properties and moisture content. The formulations that resulted in either larger or smaller elongation values were used to produce films via both blown extrusion (EBF) and casting (CF) and were characterized with respect to their mechanical properties, water vapor permeability, moisture content, solubility, morphology and infrared spectroscopy. The elongation of the EF films was significantly higher than that of the CF and EBF films. The transversal section possessed a compact, homogeneous structure for all of the films studied. The solubility of the films (36-40%) did not differ significantly between the different processes evaluated. The EBF films demonstrated lower water vapor permeability (0.12 g mm m-(2) h(-1) kPa(-1)) than the CF and EF films. The infrared spectra did not indicate any strong interactions between the added compounds. Thermoplastic processing of the gelatin films can significantly increase their elongation; however, a more detailed assessment and optimization of the extrusion conditions is necessary, along with the addition of partially hydrophobic compounds, such as surfactants. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Corn grits that were supplemented with isovaleraldehyde, ethyl butyrate, butyric acid and flavour enhancers were extruded under different processing conditions. Volatile compounds retained in the extrudates were isolated by dynamic headspace and analysed using gas chromatographymass spectrometry. The expansion ratio, density and cut force to break down the extrudates were evaluated and aroma intensity was assessed using a multisample difference test. Butyric acid showed the greatest retention (96.4%), regardless of the extrusion conditions. All compounds were better retained when samples were extruded at 20% feed moisture and 90 degrees C processing temperature (2.981.0%), conditions that also resulted in greater aromatic intensity (moderate to moderate-strong intensity). The addition of volatile compounds reduced the expansion ratio and cut force, whereas the addition of flavour enhancers increased the expansion ratio but reduced ethyl butyrate and butyric acid retention.
Resumo:
Poly(ethylene tereftalate) (PET) is a polymer highly susceptible to the hydrolytic reactions that occur during applications and mainly in thermomechanical processing. These reactions lead to the decrease of molecular weight of the polymer, limiting the recycling number of the material. The reactive extrusion of the PET in presence of chain extenders is an alternative to recover mechanical and rheological properties that were depreciated by the polymer degradation. In this study, PET wastes from nonwoven fabrics production were extruded in presence of the secondary stabilizer Irgafos 126 (IRG) on variable concentrations. The results showed that Irgafos 126 increased molecular weight, decreased crystallinity and changed processing behavior of the PET, similarly to the effects produced by the well-known chain extender pyromellitic dianhydride (PMDA), showing that the secondary stabilizer Irgafos 126 can also act as a chain extender for the PET.