880 resultados para Evaluation models
Resumo:
Mode of access: Internet.
Resumo:
At head of title: International Biological Program, United States National Committee, Aerobiology Program.
Resumo:
In this paper, we evaluate the performance of the 1- and 5-site models of methane on the description of adsorption on graphite surfaces and in graphitic slit pores. These models have been known to perform well in the description of the fluid-phase behavior and vapor-liquid equilibria. Their performance in adsorption is evaluated in this work for nonporous graphitized thermal carbon black, and simulation results are compared with the experimental data of Avgul and Kiselev (Chemistry and Physics of Carbon; Dekker: New York, 1970; Vol. 6, p 1). On this nonporous surface, it is found that these models perform as well on isotherms at various temperatures as they do on the experimental isosteric heat for adsorption on a graphite surface. They are then tested for their performance in predicting the adsorption isotherms in graphitic slit pores, in which we would like to explore the effect of confinement on the molecule packing. Pore widths of 10 and 20 angstrom are chosen in this investigation, and we also study the effects of temperature by choosing 90.7, 113, and 273 K. The first two are for subcritical conditions, with 90.7 K being the triple point of methane and 113 K being its boiling point. The last temperature is chosen to represent the supercritical condition so that we can investigate the performance of these models at extremely high pressures. We have found that for the case of slit pores investigated in this paper, although the two models yield comparable pore densities (provided the accessible pore width is used in the calculation of pore density), the number of particles predicted by the I-site model is always greater than that predicted by the 5-site model, regardless of whether temperature is subcritical or supercritical. This is due to the packing effect in the confined space such that a methane molecule modeled as a spherical particle in the I-site model would pack better than the fused five-sphere model in the case of the 5-site model. Because the 5-site model better describes the liquid- and solid-phase behavior, we would argue that the packing density in small pores is better described with a more detailed 5-site model, and care should be exercised when using the 1-site model to study adsorption in small pores.
Resumo:
Water recovery is one of the key parameters in flotation modelling for the purposes of plant design and process control, as it determines the circulating flow and residence time in the individual process units in the plant and has a significant effect on entrainment and froth recovery. This paper reviews some of the water recovery models available in the literature, including both empirical and fundamental models. The selected models are tested using the data obtained from the experimental work conducted in an Outokumpu 3 m(3) tank cell at the Xstrata Mt Isa copper concentrator. It is found that all the models fit the experimental data reasonably well for a given flotation system. However, the empirical models are either unable to distinguish the effect of different cell operating conditions or required to determine the empirical model parameters to be derived in an existing flotation system. The model developed by [Neethling, SJ., Lee, H.T., Cilliers, J.J., 2003, Simple relationships for predicting the recovery of liquid from flowing foams and froths. Minerals Engineering 16, 1123-1130] is based on fundamental understanding of the froth structure and transfer of the water in the froth. It describes the water recovery as a function of the cell operating conditions and the froth properties which can all be determined on-line. Hence, the fundamental model can be used for process control purposes in practice. By incorporating additional models to relate the air recovery and surface bubble size directly to the cell operating conditions, the fundamental model can also be used for prediction purposes. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Abstract Development data of eggs and pupae of Xyleborus fornicatus Eichh. (Coleoptera: Scolytidae), the shot-hole borer of tea in Sri Lanka, at constant temperatures were used to evaluate a linear and seven nonlinear models for insect development. Model evaluation was based on fit to data (residual sum of squares and coefficient of determination or coefficient of nonlinear regression), number of measurable parameters, the biological value of the fitted coefficients and accuracy in the estimation of thresholds. Of the nonlinear models, the Lactin model fitted experimental data well and along with the linear model, can be used to describe the temperature-dependent development of this species.
Resumo:
2000 Mathematics Subject Classification: 62H12, 62P99